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Abstract

Proteus: An Adaptable Presentation System for a Software Development and
Multimedia Document Environment

by

Ethan Vincent Munson
Doctor of Philosophy in Computer Science

University of California at Berkeley
Professor Michael A. Harrison, Chair

The many different documents produced by a large software project are typically cre-
ated and maintained by a variety of incompatible software tools, such as programming
environments, document processing systems, and specialized editors for non-textual media.
The incompatibility of these tools hinders communication within the project by making
it difficult to share the documents that record the project’s plans, design history, imple-
mentations, and experiences. An important factor underlying this incompatibility is the
diversity of presentation models that have been adopted. Each system’s presentation model
is well-suited to the document types and media it supports, but is difficult to adapt to other
types and media.

This dissertation describes a new model of presentation that is designed to be applied
to a diverse array of documents drawn from many different media. The model is based
on four simple services: attribute propagation, box layout, tree elaboration, and interface
functions. Together, these services are powerful enough to support the creation of many
novel and visually rich document presentations. Furthermore, because the model is based
on a new understanding of the fundamental parameters defining media, the four services
can be adapted for use with all media in common use.

The utility of this presentation model has been explored through the design and im-
plementation of Proteus, a system for handling presentation specifications that is part of
Ensemble, an environment for developing both software and multimedia documents. Pro-
teus interprets specifications that describe how the four presentation services should be
applied to individual documents. Proteus has a medium-independent kernel that provides
the specification interpreter and runtime support for the four presentation services. The
kernel is adapted to different media via the addition of a shell specifying the medium’s
parameters. Proteus’s adaptability significantly eases the task of extending Ensemble to
support new media. Proteus is also an important part of Ensemble’s support for multiple,
synchronized presentations.

In summary, this research develops a new, medium-independent model of presentation
and shows that a specification-driven presentation system based on this model can form the
basis of a software environment supporting multiple presentations and a variety of media.
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Chapter 1

Introduction

1.1 Software Documents

Large software projects produce many different types of documents. In a sense, program
source code is the most important type of document produced, since it is the most direct
expression of the nature of the program itself. But it is often the case that the majority of
software documents are not program source code. Table 1.1 lists fifteen types of documents
that might be produced in the course of creating a program, categorized by the phases of
the “waterfall” model of the software development process [17]. Program source code is
only one of these fifteen document types, though it does appear in both the implementation
and maintenance phases.

Three classes of programs are used in the production of these documents: programming
environments, document processing software, and multimedia editors. Programming envi-
ronments are used to edit, analyze, compile, and debug programs. Document processing
software is used to edit and format natural language text documents. Multimedia editors
are used to produce non-textual material, primarily for inclusion in text documents, but
also at times for stand-alone non-text documents. Each of these types of programs does its
job well, but with rare exception, they do not work together. Put another way, the various
software documents do not interoperate.

This dissertation research was conducted as part of a larger effort to produce a single,
unified system for all software documents. This system, called Ensemble, is motivated by
the belief that by bringing the tools for creation, maintenance, browsing, and analysis of all
these types of documents into the same system, barriers that currently prevent the flow of
information (as represented by those documents) among the people involved in a software
project will be removed.

1.2 A Hypothetical Scenario

To understand why a unified system might enhance software development, it is helpful
to consider a hypothetical scenario of the system’s use. Figure 1.1 shows a mock-up of
a yet-to-be-created, mature version of Fnsemble. Four different windows, all managed by
Ensemble, are shown on the computer screen.



Phase Document Types Formal | Natural | Multimedia
Requirements system definition
project plan O O
software requirements specification O O
Design architectural design specification O O
detailed design specification O O
preliminary user’s manual O O
software verification plan O
Implementation | program source code O
walkthrough and inspection reports O
Testing test plans O
test data O
testing scripts 0
bug reports O O
Maintenance bug reports 0 0
change reports O
program source code O
errata for user documentation O O

Table 1.1: Software document types categorized by the phases of the waterfall model of the
software development process. (Some of the document types listed here were taken from
Fairley’s book [17].) The document types are divided into two categories, formal and nat-
ural, shown by check marks in the third and fourth columns. Formal documents are those,
such as programs, that are designed to be formally analyzed. All other documents are nat-
ural. Some natural documents include elements from other non-textual media. Document
types that are likely to have multiple media are marked with a star in the fifth column.




all = TRUE ;
break ;

cage g
group = TRUE ;
break ;

cage 17 :
longListing = TRUE ;
break ;

Figure 1.1: A mockup
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The upper-left window is a program-editing window. It shows a more-or-less standard
view of some program source. One identifier is highlighted because program analysis has
detected a problem with it. The Ensemble user can query the system for the nature of the
problem with a few keystrokes. Upon learning that the identifier is undeclared, standard
text-editing operations can be used either to add a declaration or to change the name of the
identifier to one that is already declared. Re-analysis of the program can be easily invoked
and will show, by removing the highlighting around the identifier, that the problem has
been fixed.

The window in the upper-right shows a presentation of the same program’s parse tree.
The nodes filled with white are the ones on the path from the root of the parse tree to
the identifier. When the user changes the text of the program in ways that alter the
parse tree, this presentation is automatically updated to reflect those changes. A parse-tree
presentation like this can have several uses:

e it can aid understanding of the program’s syntactic structure,

e it can be used to navigate through the program via its syntactic structure (and other
windows can be made to scroll in synchrony with it),

e and it can be used to make structurally-based modifications of the program.

The window in the lower-left also shows a presentation of the same program. This pre-
sentation shows the same program source code as the upper-left window, but it includes
multimedia documentation that was elided in the other presentations. The particular doc-
umentation shown is a video clip of the program’s original author which can be played back
in order to hear a description of the rationale behind the design of the adjacent source
code. A “full-documentation” presentation like this might include other kinds of multi-
media elements like graphic figures, animations, audio clips, and bitmaps. It might also
include quotations from the design documents that motivated the creation of this part of
the program.

The lower-right window shows one of these design documents. It is presented using a
wide variety of high-quality text formatting operations like multiple columns, hyphenation,
justification, and fine-grained control of paragraph layout. This window could have been
brought up by a search query that matched its contents or by following a hypertext link from
the program source. Thus, the user can access the program’s design documents without
leaving the Fnsemble environment, which reduces the effort needed to ensure that the design
documents and the program stay in agreement.

Several system features stand out in this hypothetical scenario:

Multiple presentations: Three different presentations of the program were shown. None
of the three is treated as the “best” or “most important” presentation. They are
simply different ways of looking at the program, each one providing a viewpoint or a
set of services that may be particularly useful in certain circumstances and distracting
or unhelpful in others.

Multimedia: The system supports a variety of media, including text, two-dimensional
graphics, and digital video. A document can contain elements from many media



Programming | Document | Multimedia
Feature Environments | Systems Systems
Multiple presentations +
Multimedia + 0
High-quality formatting O O
Interconnections + +
Analysis O

Table 1.2: This table illustrates the inconsistent support for important features of Ensem-
ble in existing programming, document and multimedia software. A check indicates full
support. A plus/minus symbol indicates partial or limited support.

integrated seamlessly. Alternately, it may be possible to display the same document
in different media, when doing so makes sense.

High-quality formatting: The system supports high-quality formatting services suitable
for the creation of production-quality documentation.

Interconnections: The system has facilities for representing the connections among a
collection of documents. These connections can be used for navigation between related
documents or for understanding the relationships.

Analysis: The system includes integrated analysis services for programs and other types
of documents with formal semantics. The user can query the system about analysis
results.

One might wonder whether these features are novel. Table 1.2 illustrates the extent to
which these features can be found in existing software and shows that no existing system
is able to bring together all of these features.

1.3 A Thesis

The thesis of this dissertation is:

e that it is possible to build an interactive document system providing general support
for multiple presentations of high quality in a variety of media;

e that there exists a set of presentation services that can be usefully applied to a variety
of media; and

e that a single, adaptable software module providing these services can be created and
used to manage presentation for a variety of media.

The research supporting this thesis has focused on a single subsystem of Ensemble, called
Proteus, that manages formal descriptions of appearance for the documents manipulated



by Ensemble’s users. Proteus is a single, adaptable software module providing presentation
services that are useful to several media. It is the key element in Ensemble’s support for
multiple high-quality presentations.

For an interactive document system to support multiple presentations, it must first make
a clear separation between the representation of the document and the representation of its
presentations. The document representation must include everything that is shared between
presentations or that must persist from one editing session to the next. The presentation
representation must embody the more ephemeral differences in how the document may be
viewed.

One could design a document system in which users defined each presentation of a
particular document by hand, but in practice, the task of defining a new presentation
is too time-consuming. Thus, to make multiple presentations practical, a presentation’s
appearance must be based on a formal specification that applies to a large set of documents
(such as the set of C programs, or the set of bug reports). In such a system, the module
that handles these formal appearance specifications is a critical link in the system’s support
for multiple presentations. Proteus is that module.

Presentation quality is also important, because while it is easy to build a low-quality
document system, high-quality formatting requires fine-grained control over document ap-
pearance along with other complex features. Thus, the formal appearance specifications
must describe the application of presentation services that are powerful enough to support
high-quality formatting. Proteus provides four simple services that together are powerful
enough to support high-quality formatting in several media.

One approach to supporting multiple media is to identify a presentation model that
subsumes all the qualities of the media to be supported. Unfortunately, different media
have grown out of different artistic or technical traditions and it is difficult to do them all
justice with a single model. Also, if a new medium is identified for inclusion in the system,
it may not fit the model at all. The alternative is to create a system whose services are
designed for adaptation to the needs of different media. This requires a model of the concept
of “medium” around which to base the adaptation. Ensemble supports such a model and
Proteus uses it as the basis for adapting to different media.

1.4 Overview of the Dissertation

This dissertation is organized into six chapters that present the motivation, design, and
implementation of Proteus and then evaluate its successes and failures.

Chapter 2 examines the systems that have been used to present software documents:
programming environments, document systems, multimedia systems, and user interface
software. These systems point the way to the solutions sought in this dissertation, but none
of them bring all of the right elements.

Chapter 3 describes the Ensemble system. It begins by describing the two systems,
Pan and VORIEX, whose development directly stimulated the design of Ensemble. Pan is a
language-based editing system for a variety of different programming languages. VORIRX
was a multiple-representation editor for TEX documents. Both systems had successes and
failures and the Ensemble project was undertaken as an attempt to bring together the most



desirable elements of each system in order to create a new system supporting a broader
array of documents (particularly software documents).

The design of Proteus is presented in Chapter 4. This chapter starts by describing the
architecture of Ensemble’s presentation subsystem. Then Proteus’s design is described in
detail, beginning with the architecture that enables it to adapt to different media and then
the syntax and semantics of the appearance specifications are covered in detail. FExamples
are used throughout to make the abstractions more understandable.

Proteus’s implementation is described in Chapter 5. This chapter discusses the data
structures of Proteus, the modules that operate on them and their relationship to the
design concepts presented in Chapter 4. Also described is the interface between Proteus
and the rest of Ensemble.

The next chapter is an evaluation of Proteus, both on its own terms and in comparison
to other systems providing similar or related services. Experience with Proteus is evaluated,
highlighting both positive and negative aspects of that experience. The comparisons with
other systems make clear both the areas where Proteus represents an advance over earlier
work and those areas where improvement is needed.

Finally, Chapter 7 summarizes the contributions of the research and suggests directions
that future work should take.






Chapter 2

Previous Work

This chapter explores the current state of the art in systems used to produce different
kinds of software documents and evaluates the extent to which these systems provide

e general support for multiple presentations,
e adaptability to different media, and
e high-quality formatting in those media.

This chapter also looks at some tools that can be used to build such systems: user interface
systems and compound document systems.

2.1 Programming Environments

The term programming environment can be applied to a wide variety of different systems
used to create, analyze, and maintain programs. A programming environment may be one
program or a collection of programs. FEnvironments generally provide a program editor
and a language interpreter or compiler. They may also include debuggers, configuration
management tools, and tools for examining the results of program analyses (e.g. program
profiles).

Contemporary commercial environments, like SMARTsystem! [63], support only a sin-
gle programming language and provide no particular support for non-program documents.
They provide an editor for the raw text files that are the input of the interpreter or com-
piler. The editor may be custom-made or may be based on a standard text editor like GNU
Emacs [70]. While these editors may allow the program to make simple changes of character
style or color, they do not allow the user to make persistent changes of appearance to the
document, as a document-processing system would. Also, they provide none of the more
advanced formatting services, like multiple columns, line-breaking or arbitrary font choices,
that are required for natural-language text documents.

The Cornell Synthesizer Generator [67] is an editor generator that supports a wide vari-
ety of programming languages. Given an attribute grammar specification for the syntax and

'SMARTsystem is a registered trademark of the ProCase Corp.
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static semantics of a programming language, it generates a language-specific, stand-alone
editor. This editor analyzes the text of a program, creating an attributed abstract syntax
tree. The user sees and edits an unparsing of this tree. An unparsing is an expansion of
the tree and its attributes into a text stream and is defined by unparsing rules in the at-
tribute grammar. Syntax and semantic errors are announced to the user by unparsing rules
that produce special, highlighted comments describing the errors. Because each language
can have only one attribute grammar, the Synthesizer Generator can only support a single
presentation. It has no support for multimedia.

Centaur [33] is another editor generator. In Centaur, the appearance of a program
document is specified separately from the specification of its analysis, using a specification
language called PPML (Pretty-Printing Meta-Language) [32]. A PPML specification defines
unparsing rules for tree patterns. The abstract syntax trees of program instances are com-
pared to these tree patterns and when a match is found, the corresponding unparsing rule
is activated. Centaur supports multiple variable-width fonts and changes to foreground and
background color. Most importantly, because the PPML description is separate from the
language specification, Centaur can support multiple presentation styles for a programming
language. However, it is not possible to view the same program in two styles simultaneously
and switching pretty-printing styles is awkward.

The key point to note here is the complete inadequacy of programming environments
for any task other than program editing. Their formatting model is so restricted that
no one would even consider using them for WYSIWYG document editing. In fact, these
systems are insufficient for advanced program typography like that proposed by Baecker
and Marcus [4].

2.2 Document Systems

Non-program software documents are generally produced using commercially-available
document processing systems that have direct-manipulation, WYSIWIG user interfaces. A
widely-used example is Framemaker [19]. Framemaker supports the creation and editing of
conventional text documents, tables, equations, and two-dimensional graphics. It can im-
port bitmaps and arbitrary PostScript figures. Its text formatting services include support
for multiple columns, arbitrary font choices, cross-references, automatic component num-
bering (e.g. figures, itemized lists, sections), and fine-grained control over spacing between
paragraphs, lines, words, and characters.

Framemaker treats a text document as a sequence of paragraphs that have named types.
Each paragraph type has an associated set of formatting attributes that determine the
appearance of paragraphs of that type, though the defined values may be overridden for
individual paragraphs. These attributes control font choice, spacing, tabs, and hyphenation.
Sets of paragraph type definitions can be stored in files known as templates. Templates can
be loaded into Framemaker documents at any time in order to establish or change values for
formatting parameters. However, a document’s connection with its template is not active:
if the template file changes, documents that were based on the previous version must be
updated manually. Since the description of a document’s appearance is stored with the
document itself, there is no way for Framemaker to support multiple presentations.



11

Framemaker, like almost all other commercial document processing systems, is com-
pletely sufficient for the creation of most textual software documents. However, its for-
matting model is not adequate for programs for two reasons. First, the best basis for
formatting programs is the abstract syntax tree. Framemaker’s sequential document model
is difficult, if not impossible, to adapt to a tree representation. Secondly, Framemaker’s
formatting model provides no mechanism by which two “paragraphs” can be placed on the
same line. In programs, the smallest typed elements (which Framemaker must represent as
paragraphs) are individual tokens. Since a single line can easily contain five or more tokens,
Framemaker’s style mechanism cannot express their layout. Also, Framemaker provides no
mechanism for connecting program documents to analysis tools.

Document processing systems that support tree-structured documents do exist. Almost
all of them have been designed to support SGML, the Standardized Generalized Markup
Language [22]. SGMIL was designed as a document interchange format: a storage repre-
sentation that could act as the lingua franca between otherwise incompatible document
systems. The SGML standard actually defines two languages, SGML proper and a meta-
language for creating Document Type Definitions (DTDs). A DTD is a regular-right-part
grammar [34] with supplemental specifications for cross-references and for attributes that
can be attached to the tree nodes defined by the grammar. A DTD defines a document
type, which is the set of documents that conform to the DTD’s grammar. Instances of a
document type, that is documents, are written as specifications in SGML, which is a lan-
guage for describing tree instances and the data (such as the text of a document) attached
to them.

SGML is designed to describe only the logical structure and content of a document, not
its appearance. The intention of SGML’s designers was that appearance would be speci-
fied separately, either using proprietary mechanisms or using DSSSL, the Document Style
Semantics and Specification Language [1]. Thus, SGML systems should be able to support
simultaneous multiple presentations, since the specification of the document’s appearance
is stored separately from the document itself. In practice though, they don’t. For example,
Framebuilder [20], which can import and export SGML documents, intertwines its struc-
ture and appearance specifications, a design choice that precludes multiple presentations.
Furthermore, Framebuilder uses the same formatting model as Framemaker and, thus, lacks
the layout capabilities required for programs.

One system which does support multiple presentations is the Grif structured document
editor [66].2 Development of Grif began before the use of SGMI. became widespread, so Grif
has its own version of the DTD, called a structure schema. Document appearance is defined
by a separate specification called a presentation schema. Grif’s presentation schemas allow
very fine-grained control over the layout and formatting of document elements. The layout
model can support multiple elements on the same line and so is sufficient for program
formatting.

Grif also supports a limited form of multiple presentation, called views. A single pre-
sentation schema can define several views. For instance, a presentation schema for Report

2Furuta [21] makes clear that any document model with typed elements (such as Framemaker’s model)
should be considered “structured”. In practice, though, the term structured document usually means “tree-
structured document” and the dominance of SGML in the marketplace is beginning to make the term
equivalent to “SGML document”.
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documents can define “Full Text” and “Table of Contents” views. The Full Text view would
show the entire document, while the Table of Contents view would show only the chapter
and section headings. The user can see both views simultaneously and changes made in one
will appear in the other. However, Grif does not provide the same synchronized viewing for
presentations defined by different schemas.

Grif’s development began in a research environment. It has since been commercialized
and the commercial version is a true SGML system using SGML DTDs instead of structure
schemas [24].

Grif does have some serious limitations.

o [t is difficult to extend Grif to support media other than text. The technical reasons
have never been described in detail, but currently Grif supports only text, bitmaps,
and restricted forms of mathematics and two-dimensional graphics. One obvious prob-
lem is that Grif’s presentation schema language, P, is not modularized with respect
to media. So, the addition of a new medium requires modification of Grif’s core
presentation services.

o Grif’s formatting model for text is not as rich as those of commercial document
processing systems. For instance, it cannot produce multiple columns.

e The P language is idiosyncratic. It lacks unifying principles around which a presen-
tation designer can come to a general understanding of the language. For instance,
the language has some boolean parameters. It also supports features (e.g. control
over page breaks) that seem to be equivalent to booleans, but are invoked with a
command-like syntax, rather than a parameter-setting syntax.

e The P language lacks power. In particular, it is hard to write context-sensitive rules
for node types because the language does not support conditionals.

In spite of these limitations, Grif remains the most important single influence on this disser-
tation. It demonstrated the potential of multiple presentations and identified a formatting
model for tree-structured documents that appears to be sufficient for all textual documents,
including programs.

2.3 Multimedia Systems

Software for editing multimedia documents is both very sophisticated and very primitive.
It is possible to buy software for personal computers (albeit expensive personal computers)
that can bring much of the power of professional studio editing equipment into the home.
But while this software is powerful and provides the ability to construct complex and so-
phisticated multimedia presentations, its approach is, in many ways, primitive. In these
programs, multimedia documents are created and edited at a very low level. There is no
high-level document model, comparable to SGML, that separates document structure from
document presentation. Instead, each document is a stand-alone object described almost
entirely in terms of the way it looks or plays.
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For example, in MacroMedia’s Action! program for multimedia presentations [45], every
document element has start and stop times that determine how long it appears on the screen.
Each element also has manually set positions, movements, and drawing styles. These values
must be set explicitly for each object and there is no easy way to define structures that can
be shared by multiple documents.

Interestingly enough, the Action! program does provide multiple presentations of its
documents, though the set of possible presentations is fixed. These different presentations
help the user see and manipulate all the elements in the document, even though there is no
single time point at which all of them are on the screen. The various presentations provide
different abstractions that either ignore time (the “Compressed View”) or map it into the
spatial dimensions (the “Timeline” and “Scene Sorter” tools). Because of the complexity of
multimedia documents, a similar variety of presentations can be found in other commercial
systems such as PowerPoint [49] and Director [46].

An important research trend in multimedia systems is the growing use of spatial layout
techniques for automatic layout of multimedia objects in the time dimension. Most multi-
media programs require that objects be placed explicitly on a time line and do not support
the kinds of automatic layout services that are common in document systems and in user
interface software. Buchanan and Zellweger [9] discuss this idea explicitly and describe how
they use spatial techniques for automatic temporal layout in the Firefly system. The Xavier
multimedia toolkit [26] extends the boxes-and-glue layout mechanism of the Interviews user
interface toolkit [44] to the time dimension. The boxes-and-glue model was originally intro-
duced in the TEX document formatter [38] with no particular thought about its applicability
to temporal layout. This work makes clear that, for the purposes of document layout, the
widely-perceived distinction between the time dimension and the spatial dimensions is more
apparent than real.

2.4 User Interface Software

Since the appearance of documents is part of their user interface, it is natural to ask
whether user interface systems provide useful services for software documents. As with
the systems examined earlier, the answer is that they offer partial solutions at best. Most
user interface toolkits (e.g. OSF/Motif [53] and Tk [58]) focus their services on classic user
interface objects such as windows, buttons, menus, and scrollbars. Typically, they also
provide a few more heavyweight objects, such as Motif’s text widget or Tk’s canvas. These
tools are more complex and can be used to build specialized document interfaces, but their
formatting capabilities never approach those of a real document or multimedia system and
they are hard to extend.

The Garnet [52] toolkit for X11 is consciously designed to provide services for the appli-
cation window (as opposed to the user interface wrapper around the application window).
It manages layout of graphic and text objects with a layout system based on uni-directional
constraints. However, Garnet lacks support for high-quality text.

The Interviews toolkit [44] has better support for text because it uses the boxes-and-glue
layout model. In fact, the toolkit has been used as the basis for a text document editor [10]
that uses the optimal line-breaking algorithm of Knuth and Plass [40].
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Both Interviews and Garnet are constructed in object-oriented languages, so they should
be relatively easy to extend to new media. The Xavier toolkit mentioned in the previous
section shows that this promise can be realized under Interviews. However, neither system
provides any support for multiple presentations. In fact, in both systems, there is little
separation between the representation of an object’s meaning and its appearance.

The Chiron [35, 76] user interface development system does support multiple presen-
tations. The central concept in Chiron is that of the artist, which is an agent responsible
for managing the appearance of an abstract data type (ADT) and the user’s interaction
with the ADT. A single ADT may have any number of artists attached to it. Artists are
implemented in an extended version of Ada and are compiled into the system. This means
that it is unlikely that new presentations will be defined by end users.

The Chiron system provides a server that renders user interface objects, graphics objects
and text. It also multiplexes user input to its various artist clients. Much of the code
needed to build an artist is automatically generated. Chiron provides a set of drawable
representations implemented as a hierarchy of C++ classes. This set, called the ADL
hierarchy, is sufficient for a user interface system but is not sufficient to support high-quality
multimedia documents [11].

2.5 Summary

Looking back at the systems described in the last four sections, a number of facts become
clear:

e No existing system provides a general mechanism for multiple presentations of high
quality, though Grif and Chiron come close. Grif’s mechanism for multiple presen-
tations is not fully general. Chiron has a very general mechanism, but does not
provide services for producing high-quality output and is implemented in a manner
that discourages style modification by end users.

e So far, the only presentation services that have been shown to apply to a variety
of media are layout services (constraints in Garnet and boxes-and-glue in Inter-
views/Xavier). While layout is very important, document presentation involves much
more than just the placement of objects.

e No system other than Interviews/Xavier has made a clear demonstration of its ex-
tensibility to different media. Even Interviews lacks an explicit notion of “medium”
around which to base this extensibility.

Thus, it is clear that the state of the art in handling multimedia documents in general,
and software document in particular will be advanced by the creation of a system achieving
these goals.



15

Chapter 3

Ensemble

Ensemble is an environment for the creation, maintenance, analysis, and browsing of
all types of software documents. In FEnsemble, these varied documents will interoperate
seamlessly, bringing down technical barriers that currently hinder effective communication
between the designers, implementors, users, maintainers, and extenders of a system.

Research on Ensemble has focused on the development of generic services that can be
usefully applied to many different document types. In and of itself, this is not an unusual
goal. What is unusual about Ensemble is its commitment to using specification-driven
services. Ensemble currently accepts six different kinds of specifications for:

e lexical analysis,

e parsing,

e static semantic analysis,
e document structure,

e user interface control,

e and document presentation.

3.1 Ensemble’s Ancestors

Ensemble grew out of experience with two systems developed earlier at Berkeley, Pan and
VORIEX. Pan [5] was a programming editor with integrated support for program analysis.
VORTEX [13, 14] was an editor for TEX documents that supported both a source view and
a direct-manipulation view of the document. This section describes these systems in some
detail and shows how the goal of merging their features resulted in the creation of Ensemble.

3.1.1 Pan

Pan is a multi-lingual programming environment that combines a window-based user
interface with integrated program analysis services. What sets Pan apart from other pro-
gramming environments, such as Centaur or the Cornell Program Synthesizer [33, 67], is
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that it is a syntax-recognizing editor. A syntax-recognizing editor allows the user to per-
form unrestricted text editing and then reanalyzes the program as needed. In contrast,
syntax-directed editors require that the program be constructed in a top-down fashion.
Such editors typically only allow free text editing in restricted portions of a program, such
as within one expression or statement.

The syntax-recognizing approach can be found in commercial single-language program-
ming environments. However, it is rare in multi-lingual environments because there are still
open research questions about how to efficiently provide analysis services and how to best
handle syntactic and semantic errors in the program. Pan adopted the syntax-recognizing
model not because it was easy to implement but because users of syntax-directed envi-
ronments often find their top-down editing style frustratingly rigid for practical software
development. Pan is still used today as an experimental programming environment though
development of core services for Pan has largely halted and there is only a small number of
regular users.

A major portion of the research on Pan focused on improving user interfaces for pro-
gramming [72]. Rather than attempting to meet the needs of novice programmers, Pan’s
designers worked to identify techniques that could maximize the amount of useful infor-
mation available to expert programmers. An early engineering choice limited the options
available for doing this: the representation used for editing and program analysis was also
the display representation. This data structure was similar to an ASCII text file, but in-
cluded support for incremental changes to the text stream. The appearance of a program
could be manipulated by modifying the number and type of whitespace characters in the
text stream and by setting the font or color (both foreground and background) of the
characters.

There were two problems with the combined editing/display representation. The first
problem was the lack of separation between the fundamental representation of the program
and the presentation. This made it difficult to create alternate views of the program,
particularly ones from which the program could be edited. The second problem was that the
representation’s limited typographic information made it impossible to create presentations
of the program that deviated from the traditional line-oriented style to any great degree.
For instance, there was no way to place text from non-contiguous sections of a program on
the same line.

3.1.2  VoRIEX

Ensemble’s other ancestor was VORIRX, an interactive environment for editing TEX
documents that was developed at UC Berkeley between 1986 and 1989. VORTEX had three
main parts: a source editor, a proof editor, and an incremental formatter. VORTRX had a
window-based interface built using the X10 window system. VORIEX was designed to be
compatible with all TEX documents and macro sets.

The source editor was a screen-based text editor similar to GNU Emacs and to Pan
(but without Pan’s program analysis services). It had an embedded Lisp interpreter which
was used to extend the editor’s operations beyond a basic set of simple character-based and
word-based operations. Every available editing operation was accessible as a Lisp function.
Except for its ability to communicate with both the formatter and proof editor, the source
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editor was little different from other text editors.

The proof editor showed the document in its final (or WYSIWIG form), but could not be
used to edit the document directly. Rather, operations invoked in the proof editor were sent
as messages to the source editor, which changed the TEX source and notified the incremental
formatter of the change. The formatter would reformat as much of the document as was
necessary and send the changes to the proof editor, which would display them. The set
of operations available in the proof editor was more restricted than in the source editor,
primarily because the user could only see the effects of the TEX macros, not the macros
themselves.

The incremental formatter converted the text stream of the source editor into the display
structures (pages, lines, and characters) of the proof editor. It also answered queries from
the proof editor about the correspondence between the display structures and the text
stream so that the proof editor could send the correct arguments for operations to the
source editor.

The correctness of the VORTEX implementation was shown by its ability to correctly
format the rigorous trip test for TpX formatters [39]. It passed this test running in both
batch and incremental modes [12].

However, several problems in the design of VORTRX became clear as experience with
the system grew. In a sense, the problems all arose from the design of the incremental
formatter, which had been implemented by adding a checkpointing system to an existing
batch formatter for TEpX. Taking this approach had made it easier to assure that all TpX
documents would be correctly formatted, because the batch formatter had already been
certified correct. The checkpointing code simply saved the state of the TEX interpreter at
various points in the processing of the document. Unfortunately, this choice had several
negative consequences:

e The formatter was page-incremental; that is, the smallest unit of reformatting was
a page. This made the proof editor too slow to be used for regular text entry. The
design had assumed that almost all text entry would be done in the source editor,
but it quickly became clear that even small error corrections in the proof editor might
require three to six keystrokes (for deleting incorrect characters and entering new
ones). Immediate feedback about the effect of each keystroke is important for the
user to be certain that the correct modification is being made. The substantial pause
that occurred between each keystroke was not acceptable.

o [t was difficult to determine when changes on one page of the document stopped
producing changes on other pages. This problem is called quiescence detection and is
discussed in detail by Harrison and Pan [27]. Quiescence detection was particularly
difficult for IATpX documents which require two passes of the batch formatter to
resolve cross-references, though the problem was not restricted to IATRpX documents.

The fundamental problem was that in a batch formatting system driven by a macro
language, dependencies between distant parts of the document are represented by
changing the state of the formatting engine (or macro language parser). Many changes
in the state of the formatting engine are not important, but without a deeper under-
standing of the engine’s state, the many irrelevant changes cannot be ignored.
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e Changes to macro definitions could not be handled incrementally because the check-
pointing mechanism had no knowledge of the meaning of a TEX macro. So, when a
macro definition was changed, correctness could only be assured by reformatting all
parts of the document that came after the definition.

3.1.3 Merging Pan and VORIEX

The Pan and VORIEX systems were intended to solve rather different problems, but
shared some features. Both systems

e had an extensible text editor modeled after GNU Emacs,
e used a Lisp dialect as the extension language,
e had a window-based user interface,

e attempted to provide better interaction for authors of certain kinds of textual docu-
ments (i.e. programs and natural language documents, respectively),

e had adopted a multiple-representation approach,

e and required the development of incremental algorithms in order to provide sufficient
performance.

These similarities alone were enough to give the two projects reason to join forces. But the
problems experienced with each system provided even stronger motivation to collaborate.

Pan had lacked sophisticated document services. As a result, many interesting program
presentations simply were not possible. Pan needed a richer document model that separated
presentation from the core representation of a program. It also needed the kind of high-
quality typographic effects that are considered standard for document processing systems.

VORTEX had lacked language analysis services and so had been forced to use checkpoint-
ing to achieve incrementality. Because VORIFX never really understood a TpX document,
it was difficult to improve its incrementality. Furthermore, TEX’s document language was
never intended for use in an interactive setting. So, some tasks (e.g. cross-references) re-
quired multiple runs of the formatter when, in an interactive system, these problems can
be solved without multiple runs by adding data structures. Since this implied the design of
a new document language, it would make sense to design one that was well suited to the
language analysis services of Pan.

Thus, the initial vision for a merger of Pan and VORTEX was to produce a new multiple-
representation document system providing language analysis and high-quality document
processing services that would be used for both general-purpose programs and for natural-
language documents.

It soon became clear that adopting the structured document model was a better ap-
proach. The structured document model was sufficiently general to support both natu-
ral language and program documents. It provided a general mechanism supporting mul-
tiple presentations of the same document and did not prevent the use of the multiple-
representation approach, which would still be required for the analysis for programs. Grif



19

had shown that it was possible to build an interactive structured document system. A new
system based on the same technology could show the benefit of bringing document and
language technology together. This new system came to be called Fnsemble.

3.2 The Architecture of Ensemble

Ensemble’s architecture has three main components: the control subsystem, the doc-
ument subsystem, and the presentation subsystem. Each of these subsystems has a well-
defined domain to which no other subsystem can lay claim. The relationship among them
and with the window system is shown in Figure 3.1.

Document Subsystem: Documents are the fundamental objects of the Ensemble system.
They are the objects that users navigate, modify, and see on the computer screen.
In Ensemble, all documents are represented by a tree structure with the content
appearing at the leaves. The document subsystem

e provides a set of low-level navigation, access, and modification operations;

e manages the storage and retrieval of documents from the persistent store (cur-
rently the UNIX file system); and

e announces document modifications to other subsystems via change events.'

For program documents (and other documents written in languages with formal se-
mantics), the document subsystem also provides language analysis services. These
include services for lexical analysis, syntactic analysis, and static-semantic analysis.

Control Subsystem: The process of responding to user actions (as described by X11
events from Tcl/Tk [57]) is managed by the control subsystem. The core of this sub-
system is a modified interpreter for the XLISP dialect of Lisp [6]. This interpreter pro-
vides a high-level mechanism for managing the binding between user actions (mouse
and keyboard events) and internal Ensemble operations. It also manages those parts
of the user interface that are not directly related to documents themselves, such as
the main control window and the creation of buttons, menus and scrollbars. Finally,
it provides the means by which developers and end-users can customize or extend the
behavior of Ensemble. Every user action corresponds to a function in the extension
language. Communication between the extension language subsystem and the rest of
Ensemble falls into three categories:

Position Queries: Certain user actions (such as cursor placement or selection) must
be mapped to a portion of the underlying document. The control subsystem has

'In Ensemble, events are simply one-to-many procedure calls with runtime binding. They are used to
announce interesting changes in the state of objects. Clients interested in the state of a particular object
register a handler for that object’s event(s). When the object’s state changes, the event is “fired” and each
registered handler is invoked. If multiple handlers are registered, they are invoked one at a time, because
Ensemble is a synchronous system. However, no guarantees are made about the order in which events are
fired. Because no more than one handler can be invoked at a time, the problems common to asynchronous
systems (such as deadlock) cannot occur.
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Figure 3.1: Overview of Ensemble’s architecture. Single-pointed arrows represent
commands. U-shaped arrows represent query-and-response interactions.
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no knowledge of the position of document elements on the screen. To obtain this
information it sends position queries to the presentation subsystem and uses the
descriptors that are returned as arguments for operations on the document.

Redraw requests: Other user actions do not change the content of the document
but simply change what part of the document is displayed. Fxamples of such
user actions are scrollbar operations and the exposure of previously occluded (or
just created) windows. When this happens, the control subsystem issues redraw
requests to the presentation subsystem. These redraw requests are expressed in
fairly abstract form. For instance, a possible request would be to show the full
width and 5% of the vertical height of the document, centered on the position of
a cursor.

It may seem strange that events that require drawing should not go directly to
the presentation subsystem. By having the control subsystem catch all window
system events, Ensemble is able to support customization of the system’s re-
sponse to those events. Thus, synchronization of scrolling in different windows
can be specified in the extension language.

Editing Commands: Many user actions are bound to operations that modify the
underlying document. In this case, the control subsystem invokes one of the
many lower-level editing functions provided by the document subsystem. Other
editing commands are used to create useful pieces of editing state, such as cursors
and selections.

Presentation Subsystem: The presentation subsystem is responsible for drawing docu-
ments on the screen. It monitors the change events for each document. If an event
indicates that the document has changed in a way that requires reformatting, the pre-
sentation subsystem traverses the altered portions of the document and reformats the
material there. If any of the changes are visible on the screen, the presentation sub-
system issues drawing commands that bring the screen up to date. The architecture
of the presentation subsystem is described in detail in the next chapter.

Ensemble differs from other interactive systems in the separation between the control
subsystem and the presentation subsystem. The control subsystem embodies all the control
aspects of the user interface. It parses user events and makes decisions about how Ensemble
should respond to them. The presentation subsystem primarily draws documents. Its only
other output comes in the form of responses to position queries from the control subsystem.

This kind of separation between presentation and control has long been endorsed by
user interface designers. It lies at the heart of the Seeheim user interface model [62] and the
Smalltalk Model-View-Controller paradigm [41] (often referred to by its initials, MVC). But,
in practice, most interactive systems merge these two functions. For instance, in response to
a question about whether the Smalltalk community had moved beyond the MVC paradigm,
L. Peter Deutsch, one of the original Smalltalk designers, said:

There is no consensus in the Smalltalk community about this. Digitalk
uses a watered-down form of MVC that feels more familiar to people used to
programming with the lamentable Windows API. T believe both Digitalk and
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ParcPlace have created “application” objects that are places to put “all the
stuff that doesn’t fit anywhere else”; I think this usually is a mistake. There
have been quite a number of research papers investigating variants of MVC; the
project I’ve heard most about is the work by Coutaz somewhere in France.

I think at this point there is substantial agreement that it is hard to make
reusable views and controllers that are significantly more than the “controls” or
“widgets” in toolkit libraries; that separating the V and the C for widgets only
has modest value (although it does have some); that for more domain-specific
code, design dependencies inevitably arise between the M, V, and C; that the
idea of multiple simultaneous Vs/Cs for a single M can run into problems with
synchronization (which, indeed is a major problem for all UI frameworks, not
just MVC); and that despite all these shortcomings, separating the M, V, and
C is good design discipline that can produce substantially more understandable
systems. [15]

The key point here is that the only compelling reason to separate the implementation
of model, view, and controller is for a system that

e supports multiple simultaneous views, and
e does not have a simple one-to-one mapping between views and controllers.

Most systems don’t have these requirements. The SUIT user interface toolkit [60] has
multiple views of a small set of simple widgets, but each view has a different interaction
style. The Chiron user interface management system has a more general mechanism that
supports multiple agents for the same data object. Each artist manages both presentation
and control for its object. Thus, in both SUIT and Chiron, the model is separated, but view
and controller are intertwined. This makes sense, because for these systems, the differences
between two presentations of the same object are likely to be fairly substantial. For instance,
an integer object might be controlled by a slider widget or a dial widget. These two widgets
are operated by substantially different mouse motions, so each one will probably need its
own, specialized controller.

In contrast, two presentations of the same document are probably not so different from
each other. For instance, one-column and two-column presentations of the same text doc-
ument have substantially different appearances, but the text-editing and formatting com-
mands that are available for them could be nearly identical. While the presentation part
of the user interface is different, the control part is the same. Thus, it makes sense for
Ensemble to separate presentation and control.
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Chapter 4

The Design of Proteus

Proteus' is the module of Ensemble that interprets appearance specifications for docu-
ments. Proteus is central to Ensemble’s support of multiple presentations and is the first
system for handling formal appearance specifications that is designed to be adapted to the
needs of different media.

This chapter describes Proteus in detail. It begins with a description of Ensemble’s
presentation subsystem, of which Proteus is a part. Then Section 4.2 presents the archi-
tecture of Proteus. The language in which presentation schemas are written is described in
Section 4.3. Finally, Section 4.4 describes the fundamental elements of media and how they
are exploited to allow Proteus to adapt to the needs of different media.

4.1 Presentation Subsystem Architecture

The role of Ensemble’s presentation subsystem is to make formatting decisions and
then display the results by putting pixels on a screen or ink on a page. The design of the
presentation subsystem is centered around two goals:

e support for multiple presentations, and
e minimizing the effort needed to add new media to Fnsemble.

From a user’s point of view, the presentation process involves three related abstractions:
documents, presentations, and views. Their relationship is illustrated by Figure 4.1.

In Ensemble, a document is a tree-structured collection of content material. Each node
of the document tree has a type (such as “procedure keyword” in a program document or
“section title” in a book document) and the document’s content (e.g. text, video clips) is

'Proteus was a sea god of the Grreeks who lived either on the island of Pharos (according to Homer) or on
the island of Carpathus (according to Virgil). He was completely omniscient but also secretive. In order to
consult him it was necessary to surprise and bind him during his noontime nap. Upon awakening he would
attempt to escape by assuming a variety of shapes such as that of a lion, a serpent, a leopard, a boar, a
tree, fire, or water. If unable to escape by shape-changing, he would return to humanoid form, answer the
question and dive into the sea. [16]

The Proteus system was named for its adaptability, but unlike its namesake, it is also cooperative.
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Figure 4.1: The relationship between documents, presentations, and views in Ensemble.

kept in the leaves of the tree. Documents are persistent; that is, they can be saved in one
Ensemble session and restored in the identical state in another Fnsemble session.

Each document belongs to a document class, such as letter, article, television advertise-
ment, or C program. Most document classes are defined formally by context-free grammars
called structure schemas. A structure schema specifies the possible configurations of mem-
bers of the document class. Structure schemas may define ambiguous grammars. This is not
a problem for Ensemble because document classes defined by structure schemas can only be
created by top-down editing operations. Programs, and other document classes whose tree
structure is determined by analyzing a text stream, are defined using unambiguous gram-
mar specifications that are somewhat more complex than structure schemas. However, the
user can usually ignore this distinction.

As an example, Figure 4.2 shows the structure schema for a simple memorandum doc-
ument class. It states that a memorandum (called “Memo”) is composed of four elements
called “To”, “From”, “Subject”, and “Body”. The Body element is composed of one or
more “Paragraph” elements. The To, From, Subject, and Paragraph nodes are primitives,
meaning that they represent primitive content data that can be presented to the user. They
are all of the “text” primitive type.

Presentations are objects that embody a particular way of drawing a document. Fach
one is essentially a different representation of the document. Any number of presentations
may be active at the same time for a particular document. Presentations might differ only
in fairly subtle ways, such as the use of different fill colors in a graphical presentation,
but it is also possible to present the same document in multiple media at the same time.
For instance, a document containing only text can be formatted into paragraphs or it can
be formatted as a tree (i.e. a two-dimensional graphics presentation) in order to see its
hierarchical structure more directly.

Presentations “draw” the document abstractly in a virtual space that has no actual con-
nection with the user’s display or a particular printer. The appearance of the presentation
is primarily determined by a presentation schema, which is a formal specification describing
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SCHEMA Memo;

Memo: To From Subject Body;
To = text;

From = text;

Subject = text;

Body: Paragraph+;
Paragraph = text;

Figure 4.2: The structure schema for the memorandum document class.

a formatting style for the document’s class. Presentation schemas are handled by a module
of the presentation subsystem called Proteus, which is described in detail in Section 4.3.

The user sees each presentation through one or more views. A view is a window onto
a presentation drawn on a particular device. Due to constraints on the space available
on a device, a view may be able to show only a small portion of the entire presentation.
Naturally, views are also the objects to which user interface elements like menus, scrollbars,
and buttons are attached. The presentation subsystem manages only the drawing of the
presentation on the view. It leaves the management of these user interface objects to the
control subsystem.

Figure 4.3 shows how information flows between presentations, views, and the rest of
Ensemble during a user’s session. Whenever a document changes, an event is fired announc-
ing the change. Each presentation handles the event and determines whether the change
is relevant to it. If so, it performs any required reformatting, keeping track of which areas
of its virtual space have changed in the process. Once the reformatting is complete, the
presentation fires an event of its own. This event specifies only the bounding box of the
changed portion of the virtual space

This “bounding box changed” event is handled by each of the views on that presentation,
which compare their own bounding boxes to the one specified by the event. If, for a
particular view, these two bounding boxes overlap then the view must redraw the region of
the overlap. Tt does this by asking the presentation for all the formatted data that falls in
the overlap area. The view translates the formatted data from the device-independent (or
virtual space) terms of the presentation to the terms of the device (e.g. X11/Tk).

In addition to responding to changes in the document, the presentation subsystem must
also respond to rendering and backmapping requests from the extension language subsystem
Both types of requests are sent directly to a single view. When this view receives a rendering
request, it responds by simply drawing the appropriate portion of the document on the
screen. It may do this using cached data or by asking its presentation for the appropriate
formatted data.

The process of responding to a backmapping request is somewhat more complex. A
backmapping request is always made in terms of the coordinate system used by the device
(e.g. in pixel coordinates for X11). The view translates these device coordinates into the
coordinates of the presentation’s virtual space and then passes the backmapping request



26

Drawing
Commands

Presentation
Subsystem
Redraw
-
Requests Views
>
~€
Position \. o
Queries
Presentation
Data Presentation
Queries Change
Events
-
Presentations
Document >
Change
Events q / J
Document
Queries

Figure 4.3: Information flow within Ensemble’s presentation subsystem. Single-
pointed arrows represent commands. Double-pointed arrows represent call-and-return in-
teractions. Proteus is not shown.
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on to the presentation. The presentation determines what component(s) of the document
are under the point or in the region described in the request and returns a handle describ-
ing those objects to the view, which passes this result through to the extension language
subsystem.

Asin the overall architecture of Ensemble, separation of concerns is the central paradigm
of the architecture of the presentation subsystem. Presentations are only concerned with
creating an abstract layout of the document in a virtual space. They announce changes
in their abstract layout but have no idea whether any other entities are consuming the
announcements. Views are concerned with translating the abstract formatting data created
by presentations into the concrete form required by a device. They have no knowledge of
the relationship between the formatting data and the underlying document.

4.1.1 Compound Documents

The previous discussion of the relationship between presentations and views was in-
complete because it ignored an important problem: compound documents. Compound
documents are documents that include other documents. Support for compound documents
is currently an area of active commercial development with Microsoft’s Object Linking and
Embedding (OLE) [48] and Apple’s OpenDoc [54] standards competing for primacy in the
marketplace. Ensemble has a simple compound document model that bears some resem-
blance to these standards, but was designed independently. Where Ensemble moves ahead
of these standards in its adherence to a single model for all documents. In contrast, OLE
and OpenDoc only define a protocol for interaction between documents created by different
programs.

The problem that compound documents present to Ensemble’s presentation subsystem
lies in the handling of elements of the user interface like menu bars, scrollbars, and buttons.
Consider a compound document like the one whose tree is shown in Figure 4.4a. The
root document contains a total of 3 sub-documents. Together these four documents form
a smaller tree called the compound document tree, seen in Figure 4.4b. The formatting of
a compound document is performed by an isomorphic compound presentation tree, shown
in Figure 4.4c. The bounding boxes of these presentations in virtual space have a nesting
relationship corresponding to the structure of this tree.

The natural next step would be to have another isomorphic tree, the compound view
tree, through which each of the presentations would be rendered on the screen. The problem
with this approach is that Ensemble’s view objects also include the support for menu and
scroll bars and other user interface elements. A naive composition of compound views would
place these elements around the rendering of every subdocument (as shown in the mock-up
in Figure 4.5). This would prevent users from seeing compound documents in their final
form, since a printed version of the document should certainly not include user interface
gadgets.

What was needed was to create a separation between the two tasks performed by the
view objects. This was done by creating a new type of object called a Rendition. Renditions
embody the mapping between a presentation and an output device and handle all drawing
that is performed in the application window. Thus, there is a compound rendition tree
that is isomorphic to the other compound trees (shown in Figure 4.4d). The View objects
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LS SIS

a) The full tree of a compound document b) The compound document tree
¢) The compound presentation tree d) The compound rendition tree

Figure 4.4: The isomorphic relationship between the trees of documents, presentations, and
renditions. Part a) shows a compound document’s full tree. The root nodes of the various
sub-documents are drawn with thick outlines. Part b) shows the compound document
tree that is embedded in the full tree. Parts c¢) and d) show the isomorphic compound
presentation and compound rendition trees, respectively.
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To: Vance
From: Ensemble group
Subject: Ensemble crashes

Fix it yesterday!

o Ton

Figure 4.5: Mock-up of how Ensemble would look without rendition objects.

remain, but there is only one View per top-level user interface window. A View embodies
the connection between the presentation subsystem and an output device. It provides the
application window on which the various Renditions draw the document and it provides the
user-interface wrapper of menus, buttons, and scrollbars.

4.2 Architecture

Proteus is a service used by most, but not all, Ensemble presentations. Architecturally
speaking, Proteus sits between the presentation and the document, as shown in Figure 4.6.
The inputs to Proteus are the document and a presentation schema. Based on the specifi-
cations in the presentation schema, Proteus performs two primary actions:

o [t creates a presentation tree, which is an elaborated version of the original document
tree. FEvery node in the document tree will be found in the presentation tree. In
addition, the presentation tree may contain other nodes that are not found in the
document tree, but rather are generated according to tree elaboration specifications
in the presentation schema.?

e [t maintains values of formatting and layout attributes for all the nodes of the pre-
sentation tree. Proteus’s presentation client can query Proteus for these values at any
time.

2Tt should be noted that even though the presentation tree contains every node in the document tree,
some of those nodes may not be visible in the presentation because the presentation schema specifies that

they should be elided.
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Figure 4.6: The relationship between Fnsemble documents, Proteus, and presentations.

To: Ethan Munson
From: Mike Harrison
Subject: Ensemble crashes

Fix it yesterday!

T'llbe in my office the rest of the afternoon.

Figure 4.7: A presentation of the memorandum document.

4.3 Presentation Schemas

Proteus is most easily understood by examining what presentation schemas can specify.
So, this section describes the syntax and semantics of the presentation schema language for
the text medium. It uses a presentation of a simple memorandum as a running example.
The presentation is shown in Figure 4.7. The tree of the document being presented can be
seen in Figure 4.8. Note that this document tree corresponds to the structure schema given
in Figure 4.2.

The application of Proteus to the presentation of programs is illustrated by a separate
example in Appendix A.

4.3.1 Overview

Proteus provides three primary services: attribute propagation, box layout, and tree
elaboration.



31

To
“Ethan M...”

Subject

“Ensemb...”

Paragraph Paragraph

“The degr...”

“Fix it yes...”

Figure 4.8: The document tree for the memorandum document.

o The attribute propagation service is used to specify parameter values for formatting
operations. In the text medium, there is only one formatting operation, the line-
breaking operation, but it has many parameters. The parameter values of one node
can be based on the values of other nodes. This process is called propagating the
parameter values.

e The box layout service is used to lay out the elements of the document in the medium’s
k-dimensional space. The text medium is two-dimensional, so box layout is performed
in the horizontal and vertical dimensions.

o The tree elaboration service is used to automatically generate material that needs to
be visible, but is not part of the document itself. For instance, in the memorandum
presentation example of Figure 4.7, the labels for the To, From, and Subject fields
are generated. The generated material is represented by nodes that are added to the
presentation tree but not to the document tree.

Proteus provides a fourth, subsidiary service, the interface function service, which can be
used to give presentation schemas access to information maintained by other parts of the
Ensemble system.

A presentation schema is a simple, declarative specification of appearance for a docu-
ment class defined separately by a structure schema. A presentation schema specifies how
the services of Proteus should be applied to members of the document class. The outline of
the presentation schema for the sample memorandum presentation is shown in Figure 4.9.
The elided portions of the presentation schema are given subsequently. A presentation
schema has four sections: header, defaults, boxes, and rules. The header section declares
the schema’s medium, its name, and the name of the structure schema to which it corre-
sponds. The DEFAULTS section defines default presentation rules to be used when there
are no specific rules for a node. The BOXES section declares the types of nodes that can
be generated by tree elaboration. Finally, the RULES section is used to define specific
presentation rules for each of the node types defined in the document class.
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MEDIUM text; To
PRESENTATION memo FOR memo;
From :
DEFAULT R
Subject
BOXES Body :
Paragraph :
RULES ..
Memo : END

Figure 4.9: Qutline of a presentation schema for the memorandum presentation.

BOXES

ToLabel : Text("To:")
BEGIN
END;

FromLabel : Text("From:")
BEGIN
END;

SubjectLabel : Text("Subject:")
BEGIN
END;

Figure 4.10: The tree elaboration rules for the memorandum example.

In general, the language for presentation schemas is case-insensitive. The only effect of
whitespace in the schema is to separate tokens: line breaks and indentation have no other
meaning.

4.3.2 Tree Elaboration

The tree elaboration service creates and maintains the elaborated version of the docu-
ment tree called the presentation tree. The presentation tree is identical to the document
tree except that it contains additional nodes that are generated in accordance with specifi-
cations in the presentation schema. The tree elaboration rules for the sample memorandum
presentation are shown in Figure 4.10. The presentation tree that results from the applica-
tion of these rules is shown in Figure 4.11. Tree elaboration is specified in two steps. The
first step is the declaration of the nodes that can be generated in the BOXES section of the



33

To To From From Subject Subject Body
Label Label Labe
EParagrapﬂ EParagrapﬁ

Figure 4.11: The presentation tree for the memorandum example. Arcs that are present
in both the document and presentation trees are solid. Arcs that are only found in the
presentation tree are dashed.

presentation schema. In the memorandum presentation schema, this section declares three
new node types: ToLabel, FromLabel, and SubjectLabel. The ToLabel node is declared as
follows:

ToLabel : Text("To:")
BEGIN
END;

The first line declares a new node type called “ToLabel” which is a primitive text node
whose content is the string “To:”. The name of the new node type can be any name that is
neither a schema language keyword or already used as a node name. Any type of primitive
node supported by the schema’s medium may be generated. The text medium of Ensemble
only supports one type of primitive, text. The specification of the node’s content could have
used any expression whose value was a string.

The remainder of the declaration is for defining attribute propagation and box layout
rules. In this particular schema, the generated nodes don’t have attribute or box layout
rules, so nothing appears between the BEGIN and END keywords.

The generated nodes actually appear in the presentation tree because of the presence
of creation commands in the RULES section of the schema. The ToLabel node is added to
the tree because the RULES section contains a creation command for the To node type:

To :
BEGIN
CreateBefore(ToLabel);

END;
The CreateBefore command causes a node of type ToLabel to be created as a left sibling

of the To node. The same command is used to create the labels for the From and Subject
nodes. There are three other creation commands. The CreateAfter command creates right
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RULES
Memo

BEGIN
FontFamily = "new century schoolbook";
Size = 14;
Bold = No;
Italic No;
END;

To
BEGIN
Italic
END;

From :
BEGIN
Italic
END;

Subject
BEGIN
Bold = Yes;
END;

Yes;

Yes;

Figure 4.12: The attribute rules affecting font choice from the memorandum presentation
schema.

siblings, while the CreateFirst and CreatelLast commands create first and last children,
respectively.

4.3.3 Attribute Propagation

The central operation of the text medium is the line-breaking of paragraphs. The
line-breaking operation requires some text and a number of parameters that specify font,
hyphenation, justification, line spacing, and the width of the line. From these inputs, it
converts the words of the text into lines of characters to be drawn on a screen or page. The
values of the line-breaking operation’s parameters are defined using attribute rules that
control the behavior of Proteus’s attribute propagation service.

For instance, the rules that defined the fonts used in the sample memorandum presen-
tation are shown in Figure 4.12. These rules set the font of the root node of the Memo
document to be 14 point New Century Schoolbook in the Roman style (which is neither
bold nor italic). These values are propagated to the rest of the presentation tree by simple
inheritance. Certain nodes override their inherited values: the To and From nodes give the
Ttalic attribute a value of Yes; the Subject node sets the value of the Bold attribute to be
Yes.
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Attribute Rules

Attribute rules have a simple syntax:

<attribute name> = <expression> ;

The attribute named in the left hand side of the rule must belong to the presentation
schema’s medium. Fach medium has its own set of attributes, determined by the de-
mands of its formatting operations. For instance, Ensemble’s text medium currently has 15
attributes controlling font (FontFamily, Size, Bold, and Italic), hyphenation (Hyphenate,
MinHyph, MinLeft, MinRight), justification, indentation, line-spacing, visibility, foreground
color, background color, and the position of the right margin. Fach attribute has a type,
which is either boolean, string, real, or a medium-specific enumeration type. The set of
attributes available for each medium is specified by that medium’s designer (who is a pro-
grammer whose code is part of the Ensemble system). This designer is expected to document
the presentation features of the medium so that presentation schemas may be written for
it.

The expression on the right hand side of the attribute rule can be any expression whose
type is the same as the attribute named on the left hand side. Expressions can be con-
structed using a variety of operations common to general-purpose programming languages:

arithmetic operators: addition (+), subtraction (=), multiplication (%), division (/), and

modulus (%) ;

comparison operators: greater than (>), greater than or equal (>=), less than (<), less
than or equal (<=), equality (==), inequality (!=), case-insensitive string equality (= ),
case-insensitive string inequality (! );

boolean operators: logical and (&&), logical or (|1) ;
trigonometric functions: Sin, Cos, Tan, Arcsin, Arccos, Arctan ;

miscellaneous real functions: Min, Max, Trunc, Round, Abs ;

Defining Attribute Constraints

Attribute values can be constrained to depend on other node’s attribute values. This is
done using the attribute access expression, for which the syntax is:

<node expression> . <attribute name>
The value of an attribute access expression is the value of the named attribute for the node
returned by the expression on the left hand side of the dot. For instance, the following
expression gives the value of the parent node’s Size attribute:

Parent . Size

There are no attributes whose type is “node”, but there are many functions that return
nodes, all of which can appear in the left hand side of an attribute access expression.
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Tree Navigation Functions: The Parent, LeftSib, RightSib, FirstChild, and Last-
Child functions return the corresponding neighbors in the presentation tree. The tree
navigation functions have two forms. One form takes a single argument of type node.
The other form doesn’t require an explicit argument. Instead, it uses the defining node
as its argument. The defining node is the node for which the attribute was defined.

Creator: If the argument to the Creator function is a generated node, it returns the node
whose creation operation caused the generation. The Creator function has the same
two forms as the tree navigation functions.

Self: The Self function take no arguments and returns the node for which the attribute is
defined. The Self function is typically used to define a constraint between attributes
of a single node or to pass the defining node to a function requiring an explicit node
argument.

Root: The Root function returns the root node of the tree.

NthChild: The NthChild function takes two arguments, a node and a number, and returns
the child of the node whose zero-based index equals the number.

AncestorOfType: The Ancestor0fType function takes two arguments, a node and a
string. Tt searches the path from the node to the root of the tree for an ancestor
whose type name matches the string. It returns that ancestor node.

These functions are designed to allow the specification of constraints between the defin-
ing node and every other node in the tree. It is easiest to define constraints with neighboring
nodes, since the tree navigation functions and the NthChild function can be used to specify
all immediate neighbors. More distant nodes in the tree can be specified by composing
those functions, as in

FirstChild(LeftSib(Parent)) . Size

which specifies the Size attribute of a “cousin” node. Distant nodes can also be specified
using the Root and Ancestor0fType functions and, for generated nodes, the Creator func-
tion. The most common use of these functions is to define the layout constraints of the
documents. This process is described in Section 4.3.4.

Conditional Rules

All the presentation rules (attribute, tree elaboration, and box layout) for a single node
type are defined together in a rule block. The formal syntax for a node type’s rules is:

<node type name> : BEGIN <rule list> END ;
Typically, the rule block is composed of a series of rules, each terminated by a semi-colon.
It is also possible to define sets of alternate presentation rules using a conditional syntax.
For instance, the following rules make a Paragraph node’s text appear in red whenever the
Paragraph is formatted in a bold font:
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Paragraph:
BEGIN
FgColor = "Black" ;
IF (Self . Bold == Yes) THEN
FgColor = "Red" ;
ENDIF
END;

Conditionals may be nested and have a simple syntax.

IF <condition> THEN <rule list>

[ ELSIF <condition> THEN <rule list> ] +
[ ELSE <rule list> ]

ENDIF

The semantics of attribute rules that appear in conditionals are analogous to those for
assignment statements in imperative programming languages. The conditions are tested in
the order written. The first block whose condition is true has its rule list activated and
the remaining blocks are ignored. The ELSE block is activated if no preceding conditions
are true. Any attribute rules that appear in the activated rule list override all previous
definitions of the same attributes. Any unguarded rule overrides all rules that appear
before it.

When tree elaboration commands appear inside conditionals, they do not override pre-
vious tree elaboration commands. Instead, all unguarded creation commands are performed
and any creation commands that appear in the activated rule list of a conditional are also
performed. This treatment of conditional tree elaboration makes creation commands analo-
gous to output statements in an imperative programming language and allows a single node
to generate multiple nodes. The utility of this feature in described in Section 6.1.1.

The most important use of conditionals is to make presentation rules that are context
sensitive. The RULES section of the presentation schema allows attribute rules to be defined
for each node type. However, the document’s structure schema may allow the same node
type to appear in many different contexts. For instance, suppose that the structure schema
for the Article document class included the following rules:

Section : Title Preamble Subsection+ ;
Preamble : Paragraph+ ;

Subsection : Title Paragraph+ ;

Title = text ;

Paragraph = text ;

These definitions allow Title nodes to appear as children of either Section or Subsection
nodes. It is probably desirable to have the Section titles be larger than the Subsection
titles. This effect could be achieved with the following conditional rules:

Title :
BEGIN
IF (TypeOf(Parent) == "Section'") THEN
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Size = 18;
ELSE

Size = 14;
ENDIF

END;

The TypeOf function returns the type name of its node argument and is important for
constructing context-sensitive conditionals.

Default Rules and the Order of Evaluation

Proteus’s presentation schema language has a system of default rules that help reduce
the size of presentation schemas. There are two sets of default rules, explicit and implicit.

FEzxplicit default rules are defined in the DEFAULTS section of the schema. The syntax
of this section is:

DEFAULTS BEGIN <rule list> END ;
The rule list has the same syntax and semantics as rule lists for specific node types.

The rules defined in the DEFAULTS section are used primarily when the node type
does not have a rule defined for the attribute. They are also used when the node-specific
rule fails. A rule fails when its expression cannot be computed for some reason. This
could occur because of an arithmetic error (such as division by zero), but most commonly
it results from tree navigation. For instance, a node’s first child has no left sibling, so if the
LeftSib function is invoked with a first child as its argument, the function fails.

Figure 4.13 shows a fragment of a possible presentation schema for memorandum doc-
uments. In this example, the Paragraph node type doesn’t have a Size rule of its own, so
the explicit default rule for Size is used, giving a value of 12.

The implicit default rule is used when either there is no explicit default rule for an at-
tribute or the rule fails. The implicit default rule uses simple inheritance, which is equivalent
to a rule of the form

Attribute = Parent . Attribute ;

In the example in Figure 4.13, the implicit default rule causes Paragraph nodes to have a
value of “times” for the FontFamily attribute, since, in memoranda, Paragraph nodes are
always children of Body nodes.

So far, a three-stage process for finding an attribute’s value has been described, but the
complete process has five stages. The attribute evaluation algorithm tries each of the five
stages in order, stopping as soon as any stage returns a valid value. The five stages are:

e User override,

Node-specific rule,

Explicit default rule,

Implicit default rule,
o Global default value.
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DEFAULTS
BEGIN
Size = 12 ;
END;
RULES
Body:
BEGIN
FontFamily = "times";
END;
Paragraph:
BEGIN
Bold = No;
END;
END

Figure 4.13: Sample presentation schema code illustrating use of explicit and implicit default
rules.

A user override is an attribute value specified explicitly by the user for a particular node
of a document. Overrides are stored with the document object, so they persist from one
Ensemble session to another. The first stage of the attribute evaluation algorithm looks for
a user override. If one is found, its value takes precedence over any specifications in the
presentation schema.

The behavior of the next three stages has already been described. In the second stage,
the algorithm checks for a node-specific rule for the attribute. If there is one and it doesn’t
fail, the value is returned. Otherwise, the third stage follows the same procedure with the
explicit default rule. If there is no explicit default rule or the rule fails, the implicit default
rule is used.

The final stage exists because even the implicit default rule can fail. This can only occur
for the root node of the document and it is a rare event for sensibly-designed presentation
schemas. Still, in order to assure that a valid value will always be returned, the fifth stage
returns a global default value. Fach attribute has a global default value specified by the
medium’s designer. For instance, in Ensemble’s text medium, the global default values
for the Size attribute and FontFamily attributes are 12 and “new century schoolbook”,
respectively.

4.3.4 Box Layout

In Proteus, the box layout service is used to specify the positions of the elements of the
document. The box layout service is based on a model of nested boxes. In this model,
each node in the presentation tree has a bounding box, which, for the text medium, is
the smallest rectangle that encloses all of the text of the node. The nodes are laid out by
defining constraints between these bounding boxes.



40

The box layout service defines four attributes for each dimension supported by the
medium. The generic names of these attributes are extent, minimum, mazimum, and center
but each medium renames them. For example, the text medium has two dimensions Hor-
izontal and Vertical. The attributes of the Horizontal dimension are Width, Left, Right,
and HMiddle while those of the Vertical dimension are Height, Top, Bottom, and VMiddle.

While each dimension logically has four attributes, there are only two degrees of freedom
among them. Thus, some special handling is required for dimensional attributes. Proteus
adopts the solution used in Grif’s presentation language, P [65], which is to give each
dimension only two real attributes, extent and position. The three non-extent attributes
(minimum, maximum and center) are given a subsidiary role to the position attribute and
are called points. In the text medium, the position attributes for the horizontal and vertical
dimensions are called HorizPos and VertPos, respectively. The points corresponding to
HorizPos are Left, Right, and HMiddle.

Extent attributes are handled just like other attributes in the presentation schema lan-
guage, but rules for position attributes are defined with a special syntax:

<position name> : <point name> = <exrpression> ;
In the text medium’s horizontal dimension, a possible rule would be:

HorizPos: Left = LeftSib . Right;

This rule would constrain its node’s left edge to be aligned with the right edge of its left
sibling. Notice that point names, not position names are used on the right-hand side of
attribute access expressions.

The box layout service supports one other special feature, the A11Children function.
A common rule definition using this function is:

Width = AllChildren . Width ;

The informal meaning of this rule is that “This node is as wide as its children are”. The
technical meaning is this

e The Left and Right points of each of the node’s children are computed.

e Among these values, the most extreme left edge and most extreme right edge are

identified.
o The difference between these two values is returned.

The AllChildren function was originally conceived as one of a class of functions re-
turning node sets, which are unordered sets of nodes. However, to date, no other uses of
this concept have been found to be critical for use in presentation schemas. Furthermore,
no consistent semantics has been found to date for applying the A11Children function to
non-extent attributes. As a result, the A11Children function remains a special case in the
language for which a better alternative would be desirable.



DEFAULT
BEGIN

Width = AllChildren . Width;
Height = AllChildren . Height;
VertPos: Top = LeftSib . Bottom;

END;
RULES

Memo :
BEGIN
Width = 432;
HorizPos: Left
VertPos: Top =
END;

To :

BEGIN
HorizPos: Left
VertPos: Top =
END;

From :
BEGIN
HorizPos: Left
VertPos: Top =
END;

Subject
BEGIN
HorizPos: Left
VertPos: Top
END;

Body :
BEGIN
VertPos: Top
END;

Paragraph :
BEGIN
VertPos: Top
END;

36;

= RightSib(RightSib) . Left;
LeftSib . Top;

= RightSib(RightSib) . Left;
LeftSib . Top;

= LeftSib . Right + 12 ;
LeftSib . Top;

LeftSib . Bottom + 10 ;

LeftSib . Bottom + 5 ;

Figure 4.14: Box layout rules from the memorandum presentation

schema
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Layout of the Memorandum Example

The box layout rules that created the memorandum presentation are shown in Fig-
ure 4.14. This section examines these rules closely in order to illustrate how the box layout
is typically used.

The left edge of the Memo was set explicitly to be one inch (72 points) from the left edge
of the page with the rule

HorizPos: Left = 72;

The three label nodes and the two Paragraph nodes get their horizontal position using the
implicit default rule, so they inherit their position from the Memo node.

The presentation aligns the left edges of the To, From, and Subject nodes and puts
them far enough to the right that they don’t overlap their labels. To achieve this effect, it
is first necessary to recognize that the SubjectLabel node is the widest of the three labels.
So, the next constraint places the Subject node’s text a bit to the right (12 points) of the
SubjectLabel node’s right edge.

HorizPos: Left = LeftSib . Right + 12;

Then, the left edges of the To and From nodes are constrained to line up with the left edge
of the Subject node by giving them rules of the form:

HorizPos: Left = RightSib(RightSib) . Left ;

This, constrains the left edge of the From node to be aligned with the left edge of the
Subject node and then transitively aligns the To node with the From node.

The vertical positions of the presentation’s elements are based on a more linear chain of
dependencies. The default rule for vertical positioning is

VertPos: Top = LeftSib . Bottom;

This rule fails for the ToLabel node (because it has no left sibling), so the implicit default
rule is used, which aligns the top of the ToLabel node with the top of the Memo node. The
To node’s top is aligned with that of the ToLabel node via the rule

VertPos: Top = LeftSib . Top;

The same two rules apply to the FromLabel and From nodes and the SubjectLabel and
Subject nodes. The only difference from the first line is that the default vertical position
rule doesn’t fail, so the FromLabel node’s top is aligned with the bottom of the To node
and similarly with the Subject line.

The vertical position rule for Paragraph nodes is

VertPos: Top = LeftSib . Bottom + 5 ;

This rule places 5 points of space between the two Paragraph nodes. However, it fails for
the first Paragraph node, as does the explicit default rule. So, the implicit default rule is
used which makes the first Paragraph use the value of the Body node’s top. This value is
determined by the rule
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VertPos: Top = LeftSib . Bottom + 10 ;

The Body node’s left sibling is the Subject node, so the first Paragraph is placed 10 points
below the bottom of the Subject node. The net result is an attractive alignment of the
paragraphs of the memorandum body, with a little extra space between the paragraphs and
slightly more space between the memorandum header and the first paragraph.

4.3.5 The Complete Presentation Schema

By incorporating the specifications of tree elaboration, attribute propagation, and box
layout (given respectively in Figures 4.10, 4.12, and 4.14), we get the complete presentation
schema for the memorandum example given in Figure 4.15.

4.3.6 Interface Functions

The three services of Proteus that have been described so far are quite powerful, but
there is also a considerable amount of information that can be relevant to presentation
that they don’t manage. So, Proteus provides a fourth service that allows the presentation
schema language to be extended. It is called the interface function service because it
provides support for functions that cross the interface between Proteus and its presentation
clients.

As an example, Ensemble’s text medium defines an interface function called URoman that
takes a numeric argument and returns a string containing the upper-case roman numeral
representation of the number. If the number is not an integer, it is rounded to the nearest
integer before conversion. This function can be used to number the paragraphs of the
memorandum document by declaring a generated ParaNumber node whose content is the
upper-case roman numeral representation of its creator’s child number (incremented by one
to compensate for the zero-based child number values):

ParaNumber : Text(URoman(ChildNum(Creator) + 1))

and then creating the ParaNumber as the left sibling of each Paragraph in the memoran-
dum’s body:

Paragraph :
BEGIN
CreateBefore(ParaNumber) ;
END;

In presentation schemas, interface functions can be used just like any other expres-
sion. The URoman function can be used in any context where a string-valued expression is
appropriate. Its argument can be any expression returning a number.

In the current version of Ensemble, the text medium defines URoman and two simi-
lar functions, LRoman and Arabic, but otherwise, interface functions are not widely used.
However, three types of uses are expected:
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MEDIUM text;
PRESENTATION memo FOR memo;

DEFAULT

BEGIN

Width = AllChildren . Width;
Height = AllChildren . Height;
VertPos: Top = LeftSib . Bottom;
END;

BOXES

ToLabel : Text("To:")
BEGIN
END;

FromLabel : Text("From:")
BEGIN
END;

SubjectLabel : Text("Subject:")
BEGIN
END;

RULES

Memo :
BEGIN
Width = 432;
HorizPos: Left = 72;
VertPos: Top = 36;
FontFamily =

"new century schoolbook';

Size 14;
Bold = No;
Italic = No;
LineSpacing = 1.2;
Justify = LeftJustify;
Indent = 0;
Visible = Yes;
RightMargin = 504;
END;

Figure 4.15: Complete presentation schema for the memorandum presentation.

To :

BEGIN
CreateBefore(ToLabel);
HorizPos: Left =

RightSib(RightSib) . Left;

VertPos: Top = LeftSib . Top;
Italic = Yes;

END;
From :

BEGIN
CreateBefore(FromLabel);
HorizPos: Left =

RightSib(RightSib) . Left;

VertPos: Top = LeftSib . Top;
Italic = Yes;

END;
Subject

BEGIN
CreateBefore(SubjectLabel);
HorizPos:

Left = LeftSib . Right + 12 ;

VertPos: Top = LeftSib . Top;
Bold = Yes;

END;

Body :

BEGIN

VertPos:

Top = LeftSib . Bottom + 10

END;
Paragraph :
BEGIN
VertPos:
Top
Justify = BlockJustify;
Indent = 20;
END;
END

LeftSib . Bottom + 5

I

I
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Medium-Specific: Some kinds of information that are important for presentation are
peculiar to specific media. Since Proteus is medium-independent, it is inappropriate
to support these directly. For example, in certain graphics documents it might be
useful to base an object’s color on its area. However, computing the area of irregularly-
shaped objects, like closed spline paths, is outside the scope of Proteus’s mathematical
operations. So, the graphics medium could define an Area interface function that
takes a node as its argument and returns the node’s area. The text medium’s URoman,
LRoman, and Arabic interface functions are also medium-specific.

Editing State: The state of a user’s editing session is maintained by the extension lan-
guage subsystem. Examples of editing state are the current selection and the current
cursor location. If the appearance of the selection is to be under the control of presen-
tation schemas, it must be possible to find out which document elements are selected.
Interface functions can be used to make that information available.

Analysis: Certain kinds of analysis are outside the scope of Proteus’s presentation services
and are not reflected in the document tree. Static semantic analysis of programs,
which in Fnsemble will be performed by a part of the language kernel called Colander
IT, is a good example. The results of analysis can be used to guide presentation.
For example, a presentation schema might invoke a Declared function which, when
passed an Identifier node, would return a boolean value representing whether or
not the identifier was declared.

4.4 Extensibility to New Media

Proteus and its presentation schema language can be adapted to new media because of a
new understanding of the fundamental elements that define a medium. Fxisting dictionary
definitions of the "medium” concept are not sufficiently operational to form the basis of an
adaptable software system. For instance, one such definition states that a medium is “a
mode of artistic expression or communication.” [75] This definition is intuitively correct,

but it doesn’t provide the information that Proteus needs to adapt to different media.

4.4.1 The Elements of Media

What Proteus needs is a specification of the elements that make one medium different
from another. Careful examination of the demands of formatting documents in different
media led to the identification of these elements. Based on this model, Proteus has already
been adapted to three different media: text, two-dimensional graphics, and digital video.

The elements of a medium are:

e a set of primitive object types,
e a set of dimensions in which such objects are laid out, and

e a set of parameterized formatting operations.
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In Ensemble, these elements are embodied in a C++ object called a Medium. Currently,
Medium objects are created by hand, but they are designed to be generated automatically
from a specification. The remainder of this section describes the elements of media in more
detail and how these elements are represented in the Medium ob jects.

Primitive Objects

Fach medium supports a set of primitive object types. These are the fundamental data
objects that can be formatted and rendered on a computer screen or printed page. For
example, the primitive data types of Ensemble’s current media are:

Text Medium: text (which is a sequence of ASCII characters);
Graphics Medium: point, line, ellipse, rectangle, regular polygon, and text;

Video Medium: video (a sequence of equal-sized bitmaps) and text.

A medium may support many types of primitive data (as the graphics medium does) or
only one (as the text medium does). Different media may support the same data types, as
shown above where the text data type is supported by all three media.

Proteus needs to know about the primitive data types in order to support tree elabo-
ration. Each Ensemble Medium object includes a set of canonical instances of its primitive
nodes. Other parts of Ensemble can ask which types are supported or whether there is a
supported primitive with a particular name (e.g. “Rectangle”). The tree elaboration service
uses this information to check the correctness of generated node declarations. That service
also needs to know, for each primitive node type, the type signature of the function used
for setting the primitive node’s data slots.

Dimensions

The primitive objects of a medium are laid out in a k-dimensional space. Media differ
in the number of dimensions they support and in the names and types of their dimensions.
Ensemble’s text and two-dimensional graphics media have the same two dimensions, hori-
zontal and vertical, both of which are spatial. Ensemble’s digital video medium also uses
these two spatial dimensions and adds the time dimension.

It is easy to conceive of media having anywhere from one to four dimensions. For
instance, digital audio has a single dimension of time, while three-dimensional animation
has three spatial dimensions and one time dimension. However, it is difficult to conceive of
a medium supporting more than one time dimension or more than three spatial dimensions.

There are some more fine-grained distinctions between the dimensions of media that can
be important. Often, media have different design communities with their own conventions.
For instance, while text and two-dimensional graphics logically have the same dimensions,
they have different conventions for the natural location of the origin. Typographers usually
place the origin at the upper left hand corner of the drawing area and “grow the document
down” from that point. In contrast, some graphical domains (drafting for instance) are
likely to put the origin in the lower left corner. Another area in which media have different
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Parameter Name | Type Description

FontFamily string font family

Size numeric font size (in points)

Bold boolean bold font style

ITtalic boolean italic or oblique font style
Hyphenate boolean whether to hyphenate

MinHyph numeric minimum word length

MinLeft numeric minimum characters left of hyphen
MinRight numeric minimum characters right of hyphen
Justify enumeration | how to justify lines

Indent numeric first line indentation

RightMargin numeric position of right margin
LineSpacing numeric spacing between lines

FgColor string foreground color

BgColor string background color

Visible boolean whether element is visible

Table 4.1: Parameters of the line-breaking operation of Ensemble’s text medium.

conventions is in units of measure. An example is typographer’s points, which are widely
used in typography, but not in other domains.

Proteus needs to know two things about the dimensions of a medium. First, it needs
the names of the attributes (extent and position) and points (minimum, maximum, and
center) of each dimension. The designer of a medium may assign these names in any way
that is useful. This allows Proteus to support the various origin conventions. The text
medium can bind the name Top to the minimum point, which tends to put the origin at
the top of the page or screen. The graphics medium can place the origin at the bottom of
the drawing area by binding the name Bottom to the minimum. The second thing Proteus
needs to know is whether the medium has any special units and to which dimensions they

apply.?

Formatting Operations

Media have distinctive formatting operations. These operations are controlled by a set
of typed parameters. For example, Ensemble’s text medium has one formatting operation,
line-breaking, whose parameters are shown in Table 4.1.

It is tempting to think that a medium has one formatting operation for each primi-
tive data type it supports. However, there are counter examples to this claim. The two-
dimensional graphics medium can use the same stroking and filling operation for all its
objects. The text medium also has a page-breaking operation that operates on the ele-
ments of the documents largely without regard to their type.

3Support for custom units has not been implemented yet.
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For the purposes of Proteus, what is important is not the number of operations, but
rather their parameters. The parameters of the formatting operations are, along with the
layout decisions, the key determinants of the appearance of the document. So, Fnsemble
Medium objects store a description of the medium’s set of formatting parameters. That is,
for each parameter, the name and type of that parameter are stored. Proteus uses this
information to determine which attribute names appear in presentation schemas and to
check their types.
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Chapter 5

The Implementation of Proteus

Proteus has been implemented in C++ using the g++ compiler as part of the current
Ensemble prototype.. Currently, it is supported on both Sun’s Sparc architecture (running
SunOS 4.1) and on the HP PA-RISC architecture (running HP-UX 9.0). This chapter
describes its implementation.’

5.0.2 Architecture

Proteus has a kernel/shell architecture (shown in Figure 5.1) that makes a clear sep-
aration between the medium-independent and medium-specific aspects of its operation.
Proteus’s kernel is independent of any particular medium and contains two agents, the
schema translator and the presentation engine. The schema translator translates presenta-
tion schemas into presentation tables. The presentation engine uses these tables to maintain
the presentation tree and to answer the queries of its presentation clients.

The medium-specific shells are designed to be generated automatically from simple spec-
ifications. However, they are currently created by hand. The shells have two primary
components, a translator configuration and a custom interface. The translator configura-
tion for a medium adapts the schema translator to the domain of that medium (attributes,
dimensions, primitive data types). The custom interface provides the same medium-specific-
to-generic mapping at the boundary between the presentation engine and its presentation
clients.

5.0.3 Class Hierarchies

The expression of this architecture in C++ is based primarily on two class hierarchies,
the Presentation hierarchy and the PresSchema hierarchy, which are shown in Figure 5.2.

The ProteusPres and PresSchema classes implement Proteus’s kernel. The Proteus-
Pres class provides a virtual tree abstraction used by the tree elaboration service and
a value caching system used by the attribute propagation and box layout services. The
PresSchema class embodies the schema translator and holds the runtime representation of
the presentation schema.

'Some familiarity with object-oriented programming languages, and with C++ in particular, is helpful for
understanding this chapter.
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Presentation

Document
Schema

Presentation
Tables

|
Custom !
Interface !

Presentation ! A .
Tree (Ij responses queries

Presentation

Figure 5.1: The kernel/shell architecture of Proteus which forms the basis of its adaptability
to different media. The kernel appears in the center surrounded by the thick, solid border.
The shell has a thin, dashed border and consists of a translator configuration and a custom
interface.

Present ati on

PresSchema
Pr ot eusPr es Real i zePr es

Text PSchema Vi deoPSchemn

Text Pres Vi deoPr es .
G aphi csPSchema

G aphi csPres

Figure 5.2: The two C++ class hierarchies that implement the kernel/shell architecture of
Proteus.
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The medium-specific shells are implemented by instances of the Medium class and by
each medium’s specialized subclass of the PresSchema class. Instances of the Medium class,
described in some detail in Section 4.4.1, are the translator configurations for each of the
media. The TextPSchema, GraphicsPSchema, and VideoPSchema classes provide the custom
interface for each medium.

The Presentation Class

The Presentation class defines the runtime representation of presentations. Ensemble
presentations are not required to use Proteus, which allows tools developed outside the
Ensemble framework to be brought into the system as “black boxes”. For example, the
Realize data visualization tool [59] has been integrated into Ensemble via the RealizePres
class. The primary requirement for such presentations is that they adhere to Ensemble’s
protocol for compound presentations. The root Presentation class defines this protocol.

The ProteusPres Class

The ProteusPres class is the root class for all presentations that use Proteus. Its
primary addition to the compound document services of the Presentation class is support
for the presentation tree. The presentation tree is a wvirtual copy of the document tree to
which nodes generated by the tree elaboration service are added. The copy is virtual in
the sense that the nodes from the document tree are not actually copied. Instead, the
generated nodes are stored in attachment records. The attachment records are themselves
stored in a hash table indexed by the node to which they are attached.? The ProteusPres
class provides an interface for navigating the presentation tree that hides the attachment
mechanism.

The ProteusPres class also supports a cache of attribute values used by the attribute
propagation and box layout services. The details of the use of this cache are described later
in Section 5.0.4.

Medium-specific Presentation Classes

A medium designer who wishes to use Proteus does so by creating a subclass of the
ProteusPres class. Ensemble currently has three such subclasses called TextPres (sup-
porting the text medium), GraphicsPres (for two-dimensional graphics), and VideoPres
(for video). Each of these classes provides:

e Data and functions for the medium’s formatting operations,

e Handlers for document change events which invoke the formatting functions as ap-
propriate,

e Initialization functions invoked when a presentation is first created,

e Hit detection functions used to determine whether mouse clicks actually “touch” par-
ticular objects, and

2Credit for the design and implementation of the virtnal tree system goes to Vance Maverick.
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double TextPSchema::fontSize (ProteusPres* tree, PNODE* node) { //
Get attribute identifier, but only on the first invocation
static int attrId = getAttrId("SIZE");

// Fvaluate attribute and extract return value from union
PslValue v = attrValue(tree, node, attrId);
return (v.doubleVal());

Figure 5.3: The implementation of the fontSize function of the TextSchema class.

e Functions that compute the size of the presentation.

5.0.4 The PresSchema Class Hierarchy

The PresSchema class is the central element in the implementation of Proteus. Its data
slots embody the presentation tables which are the runtime representation of a presentation
schema. Its functions implement the entire schema translator and most of the presentation
engine. The most important function defined by the PresSchema class is the attrValue
function, which, given a node in the presentation tree and an attribute identifier, returns
the value of the attribute for that node. The value is returned in the form of a union called
a PslValue.

The attrValue function is never called directly by the presentations that use the
PresSchema. Instead, it is invoked indirectly by member functions of its subclasses. These
subclasses specialize the behavior of the PresSchema class to the needs of each of Ensemble’s
media. Currently, there are three such subclasses called TextPSchema, GraphicsPSchema,
and VideoPSchema.

The subclasses specialize the behavior of the PresSchema class in two ways. First,
they specify which medium they are implementing (as represented by the Medium class).
The PresSchema class uses this information to determine the correct allocation of its data
structures. Secondly, they provide the custom interface of each medium’s shell. One such
function is the fontSize function of the TextPSchema class (shown in Figure 5.3). It simply
marshals the arguments for a call to the attrValue function and extracts the correct return
value from the result. The TextPSchema class defines one such function for each of the fifteen
non-dimensional attributes in the text medium plus functions for each of the four attributes
of each dimension.

Attribute Rule Tables

The primary data structure supporting attribute propagation and box layout is a table
holding pointers to expression parse trees. The table has one entry for every attribute/node-
type pair, plus an entry for each attribute’s default rule. Every node type named in the
presentation schema’s BOXES and RULES sections has table entries. The number of at-
tributes represented in the table is determined by the schema’s medium. For instance, the
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Minus
Attribute Numeric
Access Constant

sizel |1

Parent

null

Figure 5.4: The parse tree of an attribute rule. FEach node in the tree is an evaluable
expression. The small box in the lower right corner of some of the nodes is a data slot
holding data specific to the expression’s type. Because the Parent has no child, it will
evaluate to the parent of the defining node.

text medium currently has fifteen non-dimensional attributes and two dimensions. Each di-
mension requires two attribute slots. So, instances of the TextPSchema class have nineteen
entries for each node type named in the schema.

FEach table slot holds a pointer to an expression parse tree. This parse tree has a
straightforward relationship with the text of the presentation schema. For instance, a rule
of the form

Size = Parent . Size - 1 ;

would be represented by the parse tree shown in Figure 5.4.

When the presentation schema does not define a rule for a particular attribute/node-
type pair, the table entry for that pair is a null pointer. In the memorandum presentation
schema, the full set of attribute and box layout rules for the Paragraph node type is

Paragraph :
BEGIN
VertPos: Top = LeftSib . Bottom + 5 ;
Justify = BlockJustify;
Indent = 20;
END;

Thus, there are only three non-null table entries for the Paragraph node type.

Evaluating Attribute Rules

Attributes are evaluated whenever a presentation needs parameters for its formatting
operations. To get an attribute value, the presentation invokes the corresponding function
in its custom interface, which in its turn, invokes the attrValue function.
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PslValue PresSchema::attrValue (ProteusPres* tree, PNODE* node,
int attrId) {
If there is a valid entry in the cache of tree, return it

If there is a user override for node, return it

If there is a node-specific rule for the attribute, then {
evaluate the expression
if evaluation does not fail, return the result

}

If there is an explicit default rule for the attribute, then {
evaluate the rule’s expression
if evaluation does not fail, return the result

}

If node is not the root of the presentation tree
Call attrValue on the parent of node.

Otherwise, return the global default value for the attribute.

Figure 5.5: Implementation of the attrValue function (in pseudo-code).

The attrValue function implements the five stage evaluation algorithm described in
Section 4.3.3. In addition, any values that it returns are stored in a cache maintained
by the ProteusPres class. The entire cache is invalidated whenever the size of a primitive
object changes, the structure of the presentation tree is altered, or a user override is added or
deleted. The coarse-granularity of cache invalidation results in some performance problems
that are discussed in Section 6.1.2. The implementation of the attrValue function is
sketched in Figure 5.5.

Of the five stages in attribute evaluation, the two most frequently invoked are the
ones that evaluate node-specific rules and explicit default rules. These are the rules whose
expression trees are stored in the PresSchema class and the process of evaluating them is
quite straightforward. Fach node in the expression parse tree is an instance of the Ps1Expr
class. This class defines a function called eval that takes as its arguments

e the ProteusPres instance, which provides the presentation tree for attribute access
operations,

e the node for which the attribute value is being determined, and
e a boolean reference argument called valid, that is set to false when evaluation fails.

The eval function returns a union type (called PslValue) from which the actual return
value is extracted. Each node in the expression parse tree runs the eval function recursively
on its children and then combines their return values to determine its own return value.
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For instance, the plus node in Figure 5.4 evaluates its two children (the attribute access
expression and the constant) and then returns the sum of their values.

Handling Box Layout Rules

The box layout services makes extensive use of the implementation of attribute prop-
agation. This is only sensible since box layout is based on a similar model of propagating
attributes. However, because there are only two degrees of freedom among the four at-
tributes of each dimension, certain cases must be handled specially. The approach taken
in the current implementation of Proteus is to treat each dimension’s extent attribute (e.g.
Width or Height) normally. The remaining three attributes are demoted to the role of
points which can be used to define a single position attribute. Thus, the text medium
provides a HorizPos attribute (for horizontal position) which can be set using any one of
the Left, Right, or HMiddle points.

Internally, Proteus represents a node’s position by its minimum. So, any rules that are
based on the minimum point can simply return the value of the position attribute. Rules
that involve the middle or maximum of a dimension require special handling, based on the
mathematical relationship between extent and the three points:

. o extent
middle = minimum + 5
maximum = minimum -+ extent

When an attribute access expression for the middle or maximum points appear in a schema,
the translator replaces it with an equivalent expression computing the value from the min-
imum and extent. A rule of the form

HorizPos: Left Parent . HMiddle ;

is equivalent to

HorizPos: Left = Parent . Left + (Parent . Width / 2) ;

When position is specified in terms of the middle or maximum, the inverse procedure is
followed. In this case, a rule like

HorizPos: HMiddle = Parent . Left ;
is equivalent to
HorizPos: Left = Parent . Left - (Self . Width / 2) ;

Note that when the maximum or middle point appears on the left hand side of a rule,
then the defining node’s extent is used. When the maximum or middle point appears in
an expression that will be on the right hand side of the rule, the accessed node’s extent is
used.
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Conditional Attribute Propagation

When attribute rules appear inside conditionals, their internal representation becomes
somewhat more complex. Consider the following specification for the Title node:

Title :
BEGIN
Bold = Yes;
IF (TypeOf(Parent) == "Section'") THEN
Size = 18;
ELSE
Size = 14;
ENDIF
END;

The presentation table entry for the Title node’s Bold attribute is unaffected by the pres-
ence of the conditional: it is just a simple constant expression. The table entry for the Size
attribute, however, is an if-expression that is composed of a sequence of guard/expression
pairs and a single else expression. The guard/expression pairs correspond to the IF and
ELSIF blocks of the conditional. The guard is the boolean expression determining whether
the block applies. Nested conditionals are represented by nested if-expressions.

Evaluation of if-expressions is best described as having two stages. In the first stage,
the guards are evaluated. The expression corresponding to the first guard that evaluates
to true is used. If no guards are true, then the else expression is used. The failure of a
guard expression is considered equivalent to a false value. In the second stage, the chosen
expression is evaluated and the result is returned. If evaluation of this expression fails, then
the evaluation of the entire if-expression fails.

Proteus assumes that attribute rules do not have side effects. In general this is a safe
assumption because the inherent operations of Proteus do not have side effects. However,
it would be possible to define interface functions that did (see Section 5.0.4 for a discussion
of interface functions). Thus, the creation of interface functions with side effects is strongly
discouraged. An example showing a case where side effects could be important is:

BEGIN
Size = 12;
IF (TypeOf(Parent) == "Section'") THEN
Size = 18;
ELSE
Size = 14;
ENDIF
END;

The initial “Size = 12;” rule can never take effect because there are definitions for the
Size attribute in every block of the conditional that, together, guarantee that the first rule
will be overridden. When Proteus translates a rule block having this form, it “throws away”
the initial, irrelevant attribute rule. This approach to conditionals can cause problems if
the right hand side of an attribute rule can have side effects.
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Tree Elaboration

The implementation of the tree elaboration service, like that for attribute propagation,
is a fairly straightforward translation into C++ data structures of the concepts expressed in
the presentation schema. Just as the schema specifies tree elaboration in two stages, the
service’s implementation is built around has two types of objects.

The first object type is the box specification (class Ps1BoxSpec), which is the internal
representation of a generated node declaration (from the schema’s BOXES section). A box
specification holds the name of the generated node type, the name of the node’s primitive
type, and a list of the expressions used as arguments to the function that sets the value of
the node at creation time. The box specifications are stored in a table in the PresSchema
object.

The second object type is the creation (class Ps1lCreation), which is the internal repre-
sentation of a creation command. It has three slots: an expression that specifies the node
to which the generated node will be attached, an enumeration value specifying where the
generated node will be attached (before, after, first child, or last child), and the name of
the node to be generated. Because many different creations can be defined for a single node
type, each node type’s creations are collected into a set called a creation specification (class
PslCreationSpec). The creation specifications are kept in another table in the PresSchema
object.

When a presentation is created, the tree elaboration service performs a pre-order traver-
sal of the document tree. The creation specification corresponding to each node is checked.
If the specification is empty, nothing is done. Otherwise, for each creation in the specifica-
tion:

1. The creation’s node expression is evaluated to find the attachment node. If the eval-
uation fails, the creation process aborts.

2. Otherwise, the creation’s box specification is looked up in the PresSchema’s table,
and

(a) The arguments to the value-setting function are evaluated. If any of the evalua-
tions fail, the creation process aborts.

(b) A node of the specified primitive type is generated and given its specified name.

(¢) The generated node is attached to the attachment node (computed in step 1) in
the relative position specified in the creation object.

(d) The value-setting function for the primitive type is called with the correct values
computed in step 2(a).

Once the initial elaboration of the presentation tree is complete, the presentation engine
must maintain correct elaborations in the face of changes in the structure of the underlying
document. This is done by monitoring the change events of the document and, when the
changes announced by those events affect generated nodes, making appropriate updates.
There are three important update classes:
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Insertion: Whenever a node is inserted, the creation specification tables are checked. If
there is a creation specification for that node, then the creation procedure described
above is performed.

Deletion: Deletion can affect tree elaboration in two ways because both the creating node
and the attachment node can be deleted. In most cases, the same node has both roles,
but it is possible to write creation rules that attach generated nodes to remote parts
of the presentation tree.

Creating Node: If the creating node is deleted, then all nodes that were generated
because of that node’s insertion must be removed from the presentation tree.
This operation is performed using a table in the ProteusPres class that stores
for each node N, the set of nodes that were created because N was inserted into
the presentation tree.

Attachment Node: If a generated node’s point of attachment is deleted, then the
generated node may need to be reattached at another location. The current
implementation first deletes the generated node and the attachment node. Then,
the original creation that produced the generated node is invoked again for the
creating node, according to the procedure above.

This process behaves correctly for the majority of situations. However, it is not correct
for some important cases. The central source of the problem is argument failure. Fach
generated node has its value (e.g. the string of text associated with a text primitive)
computed from a set of arguments. Fach argument is a general expression whose value may
change as the document changes. The presentation engine does not keep track of changes
that affect these expressions. As a result, the values of generated nodes are not correctly
updated in response to changes to other parts of the document. This problem is part of a
larger problem with Proteus’s current implementation that is discussed in Section 6.1.2.

Conditional Tree Elaboration

Because tree elaboration commands that appear inside conditionals do not override ear-
lier tree elaboration commands, they require a slightly different runtime representation.
The last section described how non-conditional creations were collected into creation speci-
fications. To support conditional tree elaboration, these creation specifications also contain
a list of guarded creations, each of which describes the creation commands of a conditional

block.

A guarded creation contains

e a sequence of guard conditions corresponding to the IF and ELSIF sections of the
conditional

e a matching sequence of creation specifications that describe the unguarded creation
commands of each section and any nested conditionals, and

e a creation specification for the ELSE section of the conditional.
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When a creation specification is invoked, its guarded creations are checked in a straightfor-
ward manner to determine if any additional node should be generated.

Interface Functions

Proteus’s interface function service is implemented by two C++ classes: PslFunction
and FuncCall. FEach medium contains a (possible empty) set of PslFunction objects,
which specify the interface functions that can be used in presentation schemas for that
medium. FEach PslFunction object holds the name by which the function can be invoked
in presentation schemas, a list of the types of the function’s arguments and a pointer to the
implementation of the function (i.e. a C++ function pointer).

FuncCall objects represent actual invocations of the function in a presentation schema.
The FuncCall class is a subclass of the Ps1Expr class and, thus, defines an eval function
which marshals the interface function’s arguments, calls the function, and returns its value.
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Chapter 6

Evaluating Proteus

6.1 Experience with Proteus

At this time, Proteus has been in use as part of Ensemble for about two years. Although
Ensemble is not yet used on a daily basis, it has still been possible to create and test a
variety of presentations in different media. This section discusses the lessons learned from
experience with the system.

6.1.1 Presentation Examples

The power and range of Proteus’s presentation schemas is best understood through
examples. A straightforward example of presentation in the text medium was discussed
earlier, but Proteus has also been used to create presentations of programs and of multimedia
documents.

Program Presentation

Effective presentation of programs has long been a concern in computer science. The
Algol 60 report [61] included the notion of a publication language that was separate from
the reference language used as input to the compiler. In particular, the designers of Algol 60
wanted to be able to express their programs using traditional mathematical notation (with
Greek letters, subscripts and superscripts), but also wanted to conform to the restricted
character sets supported by the computers of the time.

In the intervening years, there has been considerable discussion of both mechanisms and
stylistic standards for the pretty-printing of programs. The term “pretty-printing” has been
given several meanings. Oppen provides a minimalist definition:

A pretty-printer takes as input a stream of characters and prints them with
aesthetically appropriate indentations and line breaks [55].

Although this definition emphasizes layout, the term is often extended to include changes of
character font and other typographic effects. In fact, Oppen’s examples include widespread
use of font changes to convey the lexical class of program elements.
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The search for a superior pretty-printing style for Pascal has produced a large literature.
L’Ecuyer [43] provides a good example of this research while many other such works are
cited by Baecker and Marcus [4, p. 18] as part of their exploration of the design space of
styles for C programs.

While the particulars of program presentation style can be quite important, this dis-
sertation’s focus is on mechanism rather than policy. Traditionally, programs have been
formatted by hand-editing of the whitespace and comment characters in the source code.
This makes the author of the source code into both a programmer and a typographer.
Furthermore, the ASCII text representation of programs allows only the most primitive
formatting.

Knuth [37, 36] extended this approach in his WEB system. Users of WEB specify both
the program source and how it should be formatted using a special macro language. The
WEB system includes two filters, tangle and weave. Tangle extracts the program source
for input to a compiler. Weave extracts formatting commands for the TEX formatter. The
system provides support for complex indexing and cross-referencing operations that can
be used to produce excellent documentation. Unfortunately, WEB’s macro language is
difficult to learn, to read, and to write. While it can be used to create beautiful and
effective documentation, it does little to ease its production.

An alternative is to format programs automatically using some sort of analysis of their
text. Farly attempts at automatic pretty-printing were made by the Lisp community. The
culmination of this process is Waters’s XP [74], which is now part of the Common Lisp
standard. It provides a rich set of primitives for defining line-breaking and indentation
style. However, its concepts are difficult to separate from the Lisp environment.

Much of the pretty-printing research focuses on language-independent algorithms for
line-breaking. Oppen [55] presented an efficient, language-independent algorithm for batch
pretty-printing. The basic technique is to put grouping markers in the text stream, which
the line-breaking algorithm later replaces with newline and white-space characters. Pugh
and Sinofsky [64] modified Oppen’s algorithm to be more incremental and enriched the
set of text stream markers. Mikelsons [50] developed a different approach based on nested
boxes which appears to be language-independent, but his implementation is not. Knuth
and Plass [40] showed that the line-breaking algorithm of TEX can be used to good effect
with Pascal programs.

In order to exploit language-independent line-breaking models, other research in pretty-
printing has explored ways of formally specifying style. Rubin [68] describes a grammar-
based specification for pretty-printing intended for use in a syntax-directed editor. The
grammar is decorated with rules describing when to break lines and how to indent. A
similar approach is found in the Synthesizer Generator [67], which uses unparsing directives
in an attribute grammar. Pugh and Sinofsky’s work on algorithms was intended for use
with the Synthesizer Generator. PPMIL [32], the pretty-printing meta-language for the
Centaur environment, uses pattern-matching to bind line-breaking rules to the internal
representation of a program. Unlike Rubin’s work and the Synthesizer Generator, PPML
specifications are separate from the parsing grammar for the language, thus supporting
multiple styles.

This work on automatic pretty-printing all shares a common flaw; there is an implicit



63

PROGRAM TEST

INTEGER T
READ + , T
10 IF ( I .GE. 10 ) THEN
I =1I-10
ELSE IF ( 7 .LT. 10 ) THEN
I =71+ 20
GOTO 10
ENDIF
J = AEC
Do 20 J
I =1+
J = J +
20 CONTINUE
END

ok

==l

INTEGER FUNCTION ABC ( I )
ABC = ( I ** 2 - 10 )
END

Figure 6.1: A small FORTRAN program as formatted by Fnsemble.

assumption that the output device has the characteristics of a “dumb” terminal (e.g. fixed
line height, monospaced fonts). These systems all work by transforming one stream of text
into another stream of text. Printing characters are laid out by placing newline, space and
tab characters in the text stream. This assumption fails to take advantage of improvements
in monitors and printers, which now support a variety of more sophisticated typographic
effects. A second weakness of much of this work is the close coupling of the pretty-printing
mechanisms to the concrete syntax of the language, making it difficult to base aspects of
presentation on static semantic or execution-based information.

Ensemble and Proteus treat programs differently. From the point of view of Ensemble’s
presentation subsystem, a program is just another text document. Thus, the full power
of Fnsemble’s text medium can be applied to programs. Instead of treating the program
text as a stream of characters, the leaves of the program tree (the program’s lexemes) are
considered to be independent paragraphs that can be placed at any position in the text
medium’s two-dimensional space. Of course, in most cases, FEnsemble’s text medium will
only be used to produce more-or-less standard program presentations like the FORTRAN
example shown in Figure 6.1.

However, this formatting power can be applied to produce novel presentations of pro-
gram text that have never been achieved in stream-oriented systems. As an example,
consider the C switch statement shown in Figure 6.2. That figure shows a very normal
presentation of the switch statement. In general, each statement is on a separate line and
indentation is used to highlight the block structure of the code.
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Ensermble Docurent Viewer

TextYiew View System Edit HMowe Tool

switch (c) {
cage "a’
all = TRUE ;
break ;
case g
gronp = TRUE ;
break ;
case 1" :
longListing = TRUE ;
break ;
1

[ e— 2 -

Figure 6.2: A switch statement presented in normal, line-oriented style.

Ensernble Docurnent Viewer
TextYiew View System Edit HMowe Tool
switch (c)
care g’ ! caze g caze T
all = TRUE; group = TRUE; longListing = TRUE;
breok; breok breok

Figure 6.3: A switch statement presented in a tabular style.

An alternate, tabular presentation of the same document is shown in Figure 6.3. The
most striking difference between the two presentations is the layout of the cases. The normal
line-oriented style arranges the cases vertically, but the tabular presentation lays the cases
out horizontally, as if they were columns in a table. This might be a useful style when
trying to understand the differences between similar cases. The tabular presentation has
other differences from the normal presentation. The header portion of the switch statement
uses a larger font than the body. Keywords are italicized, while identifiers are displayed in
boldface. In emulation of text document conventions, semicolons are placed a little closer
to the lexeme to their left than are most other lexemes.

No existing program pretty-printer can reproduce the tabular switch presentation be-
cause these other systems’ adherence to the text-stream formatting approach precludes
placing non-contiguous text on the same line. In addition, programming systems do not
support the kind of fine-grained control over presentation that is required to adjust the
positions of the semicolons.
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Figure 6.4: Two presentations of the same two-dimensional graphics document, a simple
illustration of a house, a tree, and the sun.

Graphics Presentation

Ensemble’s two-dimensional graphics medium provides a number of interesting examples
showing the power of presentation schemas and the value of multiple presentations.

The graphics medium differs from the text and video media in having “data-less” prim-
itive types. For instance, nodes of the ellipse primitive type have only their type associated
with them. Every other aspect of an ellipse is considered a presentation attribute and is
under the control of Proteus. Other data-less primitive types are the line, rectangle, point,
and regular polygon types. They are contrasted with the text and video clip primitives,
whose instances contain sequences of data (characters and bitmaps, respectively).

The effects of using data-less primitives can be seen in Figure 6.4 which shows two differ-
ent presentations of a simple graphics document whose content is similar to a child’s drawing
of a house, a tree, and the sun. The presentations differ in the position of the house’s door,
the size of the tree trunk, the number of sides in the tree’s leaf area, and the arrangement
of the tree’s fruit. In most interactive graphics editors (e.g. Adobe Illustrator [2]), position,
size, and orientation are treated as fundamental qualities of an object. They can be changed
by editing operations, but they are handled separately from elements of “style” like stroke
width and fill color. The approach taken in Ensemble’s graphics medium gives full rein to
the designers of new presentations, but the results may surprise those whose experience is
based on the use of conventional graphics editors.

Of the differences between the two presentations in Figure 6.4, the most interesting is the
arrangement of the fruit, which nicely illustrates the value of having support for advanced
mathematical operations in the presentation schema language. In the first presentation, the
fruit are arranged in a spiral around the center of the tree’s leaf area by box layout rules
that use the ChildNum function and simple trigonometry. The rules are:

HorizPos: HMiddle = LeftSib(Parent).HMiddle + 2 * ChildNum(Self) *
SIN(ChildNum(Self) * 30.0);
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Figure 6.5: A simple graphics document showing the power of constraint-based layout. The
document contains a sun and four poles. FEach pole has a shadow whose size depends on
the relative positions of the sun and the poles.

VertPos: VMiddle = LeftSib(Parent) .VMiddle + 2 * ChildNum(Self) x*
C0S(ChildNum(Self) * 30.0);

In these rules, the attribute access expression
LeftSib(Parent) . HMiddle

refers to the horizontal center of the tree’s leaf area. The box layout rules of the second
presentation use the DIV and MOD functions to lay the fruit out in neat rows and columns.

VertPos: VMiddle = LeftSib(Parent).VMiddle - 40 +
22 * MOD(ChildNum(Self), 5) ;

HorizPos: HMiddle = LeftSib(Parent) .HMiddle - 45 +
15 * DIV(ChildNum(Self), 5);

Box layout constraints are also used to present the document seen in Figure 6.5. This
document contains a sun and four poles. Each pole has an attached shadow whose size is
determined by the position and size of its pole and the position of the sun. If the user moves
the sun (or a pole), the shadows change automatically to maintain the correct appearance.
Figure 6.6 shows the same document after the position of the sun has been changed.

The claim here is not that this kind of support for constraint-based graphics is revolu-
tionary, because it is not. The value of the constraint approach for managing the appearance
of graphics has already been demonstrated by earlier graphics systems, notably Sutherland’s
Sketchpad [71] and Borning’s Thinglab [7]. But these systems were designed for the domain
of graphical simulation. Constraint-based presentation is largely unheard of in software for
graphics documents. Proteus brings some of the power of a simulation system to this more
mundane domain.
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Figure 6.6: The same graphics document shown after the sun’s position has been changed.

The multiple-presentation example shown in Figure 6.4 demonstrated that multiple pre-
sentations are possible in the graphics medium. However, it did not make a clear demon-
stration of their utility. The benefits of multiple presentations become more clear when
considering Figure 6.7, which shows four different presentations of a simple “sequence” doc-
ument. This document’s tree has a root with four children, each of which is an ellipse prim-
itive. This simple sequence is then given four different presentations, each corresponding
to different implementations of the sequence abstraction: endogenous singly-linked lists,
exogenous singly-linked lists, vector, and exogenous doubly-linked lists. These four pre-
sentations could be used in an educational setting to illustrate the relationship between
abstraction and implementation.

Video Presentation

Ensemble has a simple video medium that supports two types of primitives: video clips
and text. Video clips are sequences of bitmaps (stored in MPEG-encoded disk files). The
text primitive is the same one used by the text and graphics media and is intended for
creating labels and titles.

The video medium has three dimensions: horizontal, vertical, and time. The horizontal
and vertical dimensions have the same attributes as the other media. The attributes of the
time dimension are Duration, Start, Stop, and TMiddle.

The medium only supports two attributes for video clips: FrameRate and PlayStyle.
FrameRate defines the rate at which the video clip should be played in units of frames per
second. PlayStyle is an enumeration attribute whose values are:

Natural: The video clip plays at the rate specified by the FrameRate attribute.

Stretch: The video clip is played one time at whatever speed makes it run for the time
specified by its Duration attribute.
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Figure 6.7: Four different presentations of a “sequence” document. These presentations
could serve as examples of the conceptual equivalence of different implementations of the
sequence concept.

Loop: The video clip is played over and over at the rate specified by the FrameRate attribute,
for the time specified by the Duration attribute.

These two attributes and the box layout service have been used to create several different
presentations of a test document, shown in Figure 6.8. This document contains two video
clips. One is a very short clip of a boy’s face, to which a “twisting” distortion is applied
and reversed over the course of 15 frames. The other is a clip of woman driving, talking,
and gesturing which contains about 125 frames. Both clips have a natural frame rate of
about 15 frames per second. Using Proteus, it has been possible to create five different
presentations of this document that differ from each other in either layout or play style.
For instance, the clips can be played sequentially or they can start simultaneously. If they
start simultaneously, they can play at their natural rates, or the little boy clip can played
in slow motion to fill the same amount of time as the woman clip. The playback of the two
clips can even be centered in time. just like a text document’s title is centered on the page.

These presentations show that Proteus’s services are applicable to and useful for dynamic
media like video. The box layout service is useful for temporal dimensions just as it is
for spatial dimensions. Like other media, the video medium has formatting operations
controlled by parameters. It is easy to imagine an expanded set of attributes controlling
the application of transitional effects (fades, wipes) and image processing (star and diffusion
filtering). Finally, the utility of tree elaboration for generating titles and labels is clear.

6.1.2 The Presentation Engine

The performance of the current implementation of Proteus’s presentation engine varies
considerably from document to document. When editing small natural language documents,
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Play Style: Natural
Layout: Sequential

Figure 6.8: A screen dump of an Ensemble video document. The document contains two
video clips. The text labels in the presentation were generated by tree elaboration and
describe the style of playback.

like the memorandum example discussed earlier, Ensemble keeps up with fast typing rates.
For instance, in an informal test on a SparcStation 10, [ typed the delete key twenty times
consecutively, each keystroke invoking the “delete-char” editing operation. It took me about
three seconds to do this and Ensemble showed no noticeable delay in updating the screen.
In contrast, Ensemble took about 8 seconds to perform the same twenty delete operations
in a presentation of the switch document (shown in Figure 6.2). Profiling tools have shown
that about two-thirds of this time is consumed by Proteus.

The primary difference between the memorandum and switch presentations was the size
of their presentation trees. The memorandum’s tree had 8 nodes, while the switch’s tree
had 49 nodes. This and other informal tests have led to the conclusion that Proteus’s
performance degrades to unacceptable levels as the size of the document grows.

The underlying problem is that Proteus does not store sufficient information about the
dependencies between the attribute values of the presentation tree’s nodes. The expressions
stored in Proteus’s presentation tables describe the dependencies between nodes abstractly.
No representation is maintained of the dependencies between the node instances in the
presentation object.

For instance, this rule for Paragraph nodes in memoranda

VertPos: Top = LeftSib . Bottom + 5 ;

says that every Paragraph’s top is dependent on its left sibling’s bottom. The presentation
tables store a fairly direct translation of this rule into Proteus’s internal data structures.
Suppose a memorandum has two paragraphs, P1 and P2, and that because of the above rule,
P2 depends on P1. Proteus’s data structures make it fairly easy, given P2, to determine
that P2 depends on P1, but provide no mechanism to identify this dependency given only
P1. So, if the value of P1’s Bottom attribute changes, the system has no way to determine
which node’s attribute values are affected. It must assume that all nodes are affected and
invalidate all cached attribute values.

Pan’s semantic analysis module, Colander [5], included a straightforward solution to
this problem. Colander maintained, for each attribute instance, a list of all the attribute



70

instances that were directly dependent on it. When an attribute instance changed, the
dependent attributes were placed on a work list for recomputation. This approach had
two disadvantages. First, the work list was not ordered, so an attribute instance could
be recomputed and then be immediately returned to the work list by the recomputation
of another attribute instance. Second, this approach, if applied to Proteus, increases the
storage requirements of the system because the size of the dependency information would
be proportional to the number of nodes in the document, rather than the size of the presen-
tation schema. The first problem was addressed by Hudson’s work on incremental attribute
evaluation in general graphs [30], but the second is fundamental to the approach of storing
explicit dependency information.

A better solution has been explored by my colleague on the Ensemble Project, Kannan
Muthukkarruppan. He has designed and implemented a attribute grammar system called
SPINE [51]. The attribute grammar approach has several advantages over both the current
presentation engine and the general-purpose constraint system approach:

e Dependencies between nodes are described abstractly, in terms of the document’s
grammar. Thus, the storage required for dependency information is constant.

o Efficient, incremental evaluation algorithms exist for attribute grammars.

e It is possible to choose which attributes are cached and which are not. This allow
sensible trade-offs to be made between the storage and execution time aspects of
performance.

e Compilation of attribute grammar specifications into native machine language (via
C++) is fairly straightforward.

Presentation specifications in SPINE have been hand-written for several different Ensemble
documents and substantial improvements in performance over the original presentation
engine have been observed. For example, in one test of text editing performance, Ensemble
took about 1 second to respond to each keystroke when using the current presentation
engine. Using SPINE, the response time was reduced to about .25 seconds. SPINE is
faster than the current presentation engine because its knowledge of dependencies between
the attribute values of nodes allows it to minimize the number of values that must be
recomputed and because SPINE specifications are compiled into machine code. Further
performance improvements will be possible once Ensemble’s formatters have been rewritten
to better exploit SPINE’s information about which attribute values have changed. Future
work will produce an automatic translator from Proteus’s presentation schema language to
the SPINE attribute grammar language.

One problem with this approach arises from the use of tree elaboration. The effect of
tree elaboration is to create a new document tree which does not necessarily conform to the
original document grammar. To cope with tree elaboration, SPINE would have to be able
to alter its dependency information dynamically. SPINE cannot do this, but it can be done
by higher-order attribute grammar systems, which maintain a more complete representation
of the dependencies by node types and can modify this representation at runtime. However,
the design and implementation of an incremental higher-order attribute grammar system
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remains a open research problem [73]. An alternate solution would be to take advantage of
the translation step between presentation schemas and SPINE specifications. Part of this
translation step could be an elaboration of the original document grammar.

Another limitation of the attribute grammar approach arises from the compilation of
the specifications. A feature envisioned for Ensemble is the ability to alter a presentation
schema while looking at an actual document. This would ease the creation and debugging of
presentation schemas quite a bit. In an interpreted specification system (such as the current
version of Proteus), it is fairly straightforward to alter specifications while the system is
running, since the interpreter’s data structures are readily accessible. This is more difficult
to do in a compiled system (such as SPINE), where the internal representation of the
specification is machine code. In a compiled system, some kind of dynamic re-linking of a
running binary would be required to load a new specification.

These two concerns are the only important problems identified to date with the attribute
grammar approach taken by SPINE. The expressive power of its specification language is
essentially the same, though it may not be as convenient to write certain specifications in
SPINE as it is in Proteus.

6.1.3 Experience with the Presentation Schema Language

The presentation examples described in Section 6.1.1 showed that Proteus’s presentation
schema language is powerful enough to describe a wide variety of useful presentations in
several media. Anecdotal reports from the small set of users who have written presentation
schemas have been generally positive. However, their experiences have identified some
shortcomings in the language’s design.!

Schema Idioms

Like all other specifications, some presentation schemas make repeated use of certain
idioms. The presentation schema language provides some help in this area through the
system of explicit and implicit default rules. The implicit default rule makes it easy for
entire subtrees to share the rule definitions of the subtree’s root. The explicit default rules
allow sharing of rules between nodes that are not in the same subtree. These mechanisms
are quite helpful in reducing the size and complexity of presentation schemas, but there are
granularities of sharing that they do not support.

The current language has no mechanism for sharing expressions. To understand why
this would be useful, consider the following two rules specifying left (x1) and right (x2)
end-points for the rays of the sun in Figure 6.4.

x1 = Parent.HMiddle - ((Parent(Parent).major/2) *
sin(childnum(self) * 360.0/(2.0xNumChildren(Parent))));

x2 = Parent.HMiddle + ((Parent(Parent).major/2) *
sin(childnum(self) * 360.0/(2.0xNumChildren(Parent))));

!The work of Roy Goldman, a fellow member of the Ensemble Project, on graphics presentation has been
especially helpful in pinpointing language problems.
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Both rules are quite complex, but they only differ by a single character. The rule for x1
subtracts two terms while the rule for x2 adds the same two terms. The second of these two
terms is quite complex. The schema would be both shorter and easier to understand if the
second term could be specified once and then reused in both rules. This could be achieved
through several different mechanisms including textual macros, user-defined functions, or
local attributes (which could be used to store the term’s value as an intermediate result).

Another common idiom in the presentation schemas for Figure 6.4 produces sets of rules
like the ones below for the trunk of the tree:

Height = Parent . Height * 0.6;
Width = Parent . Width * 0.05;

These rules define the size of the trunk in terms of the size of its parent, which is the node
representing the entire tree. The scaling relationship that they define is a typical idiom for
specifying the size of subcomponents in a graphics document. Because this idiom involves
multiple rules, it cannot be expressed by simple functions or through using a single local
attribute. Instead, textual macros or a more specialized mechanism designed to expand
into multiple rules would have to be used.

Tree Navigation

In the presentation schema language, constraints between the attributes of different
nodes are defined by placing attribute access expressions in the right hand side of attribute
rules. These expressions specify a node and an attribute. The node is specified using the
tree navigation functions. These navigation functions have been shown to be sufficient
for the task of specifying other nodes, but they are not always convenient to use. For
example, consider the following rule from the presentation schema for the doubly-linked list
presentation shown in Figure 6.7.

HorizPos: Left = RightSib(RightSib(RightSib(RightSib(
RightSib(RightSib(RightSib(Parent))))))) . Left;

This rule could easily have been replaced by a slightly simpler one:

HorizPos: Left =
NthChild(Parent(Parent), ChildNum(Parent) + 7) . Left ;

This rule describes the same node as the child of the grandparent whose index is 7 higher
than the index of the parent. However, while this second rule is somewhat easier to read,
it is only marginally easier to understand. Both rules are hard to understand because they
are purely navigational and make no mention of the types of the nodes being traversed.
Thus, the tree navigation functions provide no conceptual frame of reference.

The language would be improved if type-based constraints could be defined. For in-
stance, in the example given above, the grandparent of a NodeData node is always a
Sequence node and the seventh child of a Sequence node is always a NodeShell node.
Thus, a more comprehensible rule might be

HorizPos: Left = Next NodeShell . Left ;
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The precise semantics of this type of expression requires further research, but a possible
semantics might be

e Return the nearest right sibling of type NodeShell,

e Otherwise, for each ancestor, if the ancestor has a right sibling of type NodeShell,
return it,

e If no ancestor has a right sibling of type NodeShell, fail.

Being able to describe the nodes involved in constraints in terms of their types, instead of
their relative position in the tree, would make presentation schemas easier to understand.
It would also make them easier to modify if the structural schema changed.

Node Creation

The creation commands for the presentation schema language were originally designed
with traditional text documents in mind. There is extensive experience in using tree elabo-
ration for text documents in Grif. Among the many sample schemas distributed with Grif,
there are never more than two creations for a node type. However, this rule of thumb breaks
down when tree elaboration is used in the graphics domain, as is shown by an example from
the presentation schema for the doubly-linked list presentation shown in Figure 6.7. In that
schema, the rule for the Node node type includes thirteen different creation commands for
generating the boxes and arrows of the list presentation.

Createafter (NextArrow2) ;
Createafter (NextArrowl);
Createafter (NextLine3);
Createafter (NextLine2);
Createafter (NextLinel);
Createafter (NextShell);
Createafter (NodeShell);
Createafter(PrevArrow2);
Createafter(PrevArrowl);
Createafter(Prevline3);
Createafter(Prevline2);
Createafter(Prevlinel);
Createafter (PrevShell);

This example highlights two independent problems with the schema language. First, the
sheer length of this sequence of creation commands makes them confusing. Some mechanism
for organizing these commands into smaller units would be very helpful. One way to do
so would be to allow the creation of internal tree nodes. For this example, the schema
could specify the creation of PreviousCell and NextCell internal nodes. Their children
could be the existing nodes used to construct the boxes and lines for the previous and next
pointer slots or an additional layer of internal nodes could be created (e.g. PrevArrow and
Prevline).
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The second language problem is that the order of the commands is a critical element
of the specification because nodes are created in the order that the commands appear in
the schema. In this case, the nodes must be created in right-to-left order because they are
being attached as right siblings of the Node node. When the language forces its users to
be concerned with command order, it violates the declarative approach that the rest of the
language adheres to fairly consistently.?

A possible solution for this problem is to provide a different way of specifying node
generation. Tree elaboration is really just a very constrained form of tree transformation.
The creation commands can be viewed as specifying ways in which the presentation tree’s
grammar productions are different from those of the document grammar’s productions.
When the differences are few in number and local, the current set of creation commands work
well. When they are not, some other mechanism would probably be easier to work with. For
instance, a better specification style might describe the differences between the document
and presentation grammars in terms of grammar productions. In the given example, this
might take the form of

Node : NodeData ; ==>

Node : NodeData PrevShell PrevLinel PrevLine2 PrevLine3
PrevArrowl PrevArrow2 NodeShell NextShell
NextLinel NextLine2 NextLine3 NextArrowl NextArrow2 ;

The description of tree transformations is an area of active interest among programming
language researchers because of its applicability to certain problems in compilation and in
specification-based programming [18, 25].

Interactions with Box Layout Attributes

The box layout service was originally designed to meet the needs of the text medium.
It is well-suited to text because text paragraphs are usually aligned with the axes of the
Cartesian plane. Exceptions to this rule occur primarily in text for advertising and other
artistic materials, whose production is largely outside the scope of Ensemble’s current text
medium.

The box layout service has also been successfully applied to the graphics and video media
in Ensemble, but a problem with the current implementation becomes clear when the service
is used for graphics. Figure 6.9 illustrates the central problem. It shows three equal-sized
ellipses — that is, the lengths of their major and minor axes are the same. However, the
sizes of their bounding boxes are not the same because of differences in rotation and stroke-
width. Thus, the actual width of an ellipse when it is drawn is a function not only of the
lengths of its axes, but also of its stroke width and rotation.

The designer of Ensemble’s graphics medium [23], Roy Goldman, coped with this prob-
lem by

1. Creating separate attributes for the specification of object size. For ellipses, these are
the Major and Minor attributes.

2The presentation schema langnage is also order-sensitive when conditionals are used. However, to date
the constructions using conditionals have been much less complex. So, the order-sensitivity of conditional
rules has been of less practical importance.
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Figure 6.9: Nominal vs. actual size: The three ellipses in this figure have the same size
(1 inch by .6 inch), but their bounding boxes are different because of the effects of stroke
width and rotation.

2. Establishing special conventions for the extent attributes in graphics presentation
schemas. Specifically, the Width and Height attributes are treated as if they are
“read-only” attributes whose values are computed from the values of the attributes
that specify object size and rotation.

In other words, he created a set of attributes to describe the nominal extent of graphic
objects and then used the existing attributes of the box layout service to represent their
actual extent. The problem with his solution is that Proteus provides no mechanism to
enforce the relationship between the nominal and actual size attributes. So, correct behavior
of graphics presentations depends on the authors of presentation schemas adhering to the
convention.

It turns out that the same problem occurs, in a less pervasive way, in the text medium.
In order to break a paragraph into lines, a maximum line width must be specified. For
fully-justified paragraphs that have more than one line, the actual width of the paragraph
will be the same as the specified width. But as shown in Figure 6.10, the actual width of
single-line paragraphs is likely to be less than the specified maximum line width. Thus,
the text medium, like the graphics medium, requires that a distinction be made between
nominal and actual extent. The current implementation of the text medium addresses this
problem by creating an attribute called RightMargin. The maximum line width for the
line-breaking operation is the difference between the RightMargin attribute and the Left
position attribute. This allows the Width attribute to be computed from the actual sizes of
the document elements.

A possible solution to this problem is to define, for each dimension in a medium, both
nominal and actual extent attributes. Further research is required to determine how to
express this in the language and how this approach affects the position attributes.

The A11Children Function

The A11Children function, whose semantics were described in Section 4.3.4, is a special
case in a language that is otherwise quite general. In practice, because its application is lim-
ited to extent attributes, its only use is to compute and return the size of the space occupied

*These paragraphs are taken from Page Smith’s history of the Post-Reconstruction era of the United
States [69, page 117].
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Actual width of Paragraph 1
|

| |
[The New Technology|

To Henry Adams the story of the age was the story of the
creation and utilization of energy, and energy which
seemed to him to be dangerously out of control, an energy
which, indefinitely multiplied, would, he predicted,
someday blow up the world.

|
Actual width of Paragraph 2

|
Nominal width of both paragraphs

Figure 6.10: Nominal vs. actual size: The two paragraphs in this figure have the same
nominal width, but different actual widths. In the text medium, nominal width is used to
determine when lines are broken, but the actual width of single-line paragraphs (like the
first one in this figure) can be much smaller.*

by a node’s children. From this information, it is possible to determine the bounding box of
each subtree in the document. Experience with presentation schemas has shown that this
is an important feature. However, the same experience has shown that the A11Children
function needs to be replaced by some more general concept.

The A11Children function is based on a similar feature of P, the presentation language
of Grif [65]. P has an Enclosed operator, which, like A11Children, can only be used to
find the extent of a subtree and is important, but very much a special case in the language.
It was in an attempt to find a more general solution, that the concept of node set was
developed as the basis for the A11Children operator. However, a consistent semantics for
attribute access on node sets was never specified, which established the current special case
situation.

Clearly, further research is required to find a more general and elegant replacement for
the A11Children function.

6.2 Comparing Proteus to Related Systems

This section compares Ensemble and Proteus to a variety of related systems, some
of which were introduced in Chapter 2. Rather than examining each system in turn, it is
organized around three areas in which Proteus makes a contribution: synchronized multiple
presentations, style specification, and medium-independence.
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6.2.1 Synchronized Multiple Presentations

Many types of systems support some limited form of multiple presentations, including
document systems, interactive graphics editors, and multiple representation systems.

Batch document formatters, such as INTpX [42] and troff [56], have supported multiple
styles for documents for quite some time. As in Ensemble, this is possible because the
style specifications are stored separately from the document. However, because these are
batch systems, they do not support any viewing of the final output, much less viewing of
synchronized multiple presentations.

Commercial interactive document systems, such as Framemaker [19] and Microsoft
Word [47], also have provisions for storing style specifications separately from individual
documents, but these specifications must be loaded into a document in order to take effect.
Since a document can only hold one such specification, these systems are unable to support
multiple presentations.

The use of multiple presentations is common in many other types of commercial software.
One example is Adobe Tllustrator [2] which supports two views of its graphics documents: a
“Preview” view and a “Artwork” view. The Artwork view shows the PostScript paths that
define the objects in the document. The Preview view shows these objects as they will be
drawn on the page. If different windows on the same document are created showing both
views, they will both support editing and both will be kept up to date as the document is
edited. What Adobe Tllustrator lacks, in comparison to Ensemble, is the ability to define
additional views. The Preview and Artwork views are hard-coded into Illustrator. It is not
possible for an end-user to define additional views.

This pattern of supporting a fixed set of presentations is repeated in many other types of
software. Among them are research systems supporting multiple representation document
editing, including VORIEX [14, 13], Lilac [8], Tweedle [3], and Juno-2 [28, 29]. VORTEX and
Lilac support textual documents. Tweedle and Juno-IT support graphics documents. Fach
of these systems provides two hard-coded presentations: a WYSIWIG presentation and a
presentation showing a programming-language-based specification of the document’s con-
tent and appearance. The WYSIWIG presentation supports standard direct-manipulation
editing operations, while the language-based presentation supports standard text editing
operations. A change made in one presentation will appear in the other presentation,
though it might require an explicit request for synchronization by the user. The goal of
these systems is to provide both the power of language-based document systems and the
ease of use of direct-manipulation systems.

Each of these systems only supports the two hard-coded presentations, but the two pre-
sentations are very different. All of the systems except Juno-II support iterative primitives
for which Proteus has no equivalent. The iterative primitives are typically used to generate
graphical or textual elements with many repeating parts or to write explicitly procedural
descriptions of the formatting process. These system’s presentations are kept in synchrony
using specialized incremental parsing techniques that are tuned for each system’s language.
There is no obvious way to map this parsing process onto Proteus’s services. However, that is
not Proteus’s role in Fnsemble. Ensemble has language analysis services that are designed
to maintain the correspondence between language representations and other representa-
tions. Furthermore, what Proteus does provide (i.e. the ability to display one document in
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a variety of styles) is not supported in any way by these multiple representation systems.

Only two other interactive systems, Grif [66] and Chiron [35], actually provide general
support for multiple presentations.

Grif supports multiple presentations through its “view” mechanism. The author of a
presentation schema can specify several views in that schema. Different views can have very
different appearances, but some presentation rules must be the same for all views. Multiple
views on the same document that are specified in the same schema are kept synchronized
by Grif, but presentations specified in different schemas are not. Thus, Grif’s support for
multiple presentations is more limited than that provided by Ensemble and Proteus.

The Chiron user interface development system supports multiple presentations in the
form of artists. An artist is an agent responsible for both the appearance and the interac-
tion style of an abstract data type (ADT). A single ADT instance may have many artists
displaying it at the same time, so Chiron clearly provides a general mechanism for multiple
presentations. However, Chiron provides this support only to a system developer because
artists are implemented in a variant of Ada, compiled and statically linked into the system.
In contrast, Proteus’s presentation schemas are interpreted at runtime and can be created
or modified by end users. Furthermore, Chiron does not provide a high-level model of pre-
sentation. The system does include a rendering server that supports a collection of drawing
primitives, but it does not have a unified notion of presentation similar to that provided by
Proteus’s presentation services.

6.2.2 Style Specification

At the center of Proteus is its language for style specification. This language is based on
P, the presentation schema language of Grif [65], but the design of Proteus’s presentation
schema language is much more general. As a result, the syntax and semantics of Proteus’s
language are much easier to describe than those of P. This generality is the critical feature
allowing Proteus to adapt to different media (see next section). Some of the key advantages
of Proteus’s language over P are:

e In the definition of P, each presentation parameter (equivalent to an attribute in
Proteus) has a separate syntax and semantics. P lacks central unifying concepts
equivalent to the typed attributes of Proteus. For example, most parameters in P can
be defined by constraint on the values of other nodes, but some attributes, such as
those that restrict page breaking, cannot be defined by constraint.

o P does not allow arbitrary expressions on the right-hand side of its presentation rules.
It does support an expression-like syntax for some numeric presentation parameters.
For instance, the Size parameter can be specified using the following rule:

Size : Enclosing + 2 pt ;

This specifies that the value of Size should be two points larger than that of the
parent node (the “Enclosing” node). While the right-hand side of this rule appears
to be an expression, it is actually composed of a node specification (“Enclosing”)
and a difference (“+ 2 pt”). So, it is not possible to write the rule as
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Size : 2 pt + Enclosing;

e P does not support conditional rules. It does provide a restricted form of conditional
tree elaboration, but the set of possible conditions is limited.

In all fairness, it should be made clear that P (and Grif) have real advantages over Proteus
(and Ensemble). P provides support for numbering document elements, such as figures and
tables. Proteus is powerful enough to support high-quality formatting, but its current clients
are rather rudimentary. Thus, Grif’s text formatting services are much more powerful than
those of Fnsemble’s current text formatter.

Another important language-based style specification system is DSSSL [1], which is a
draft standard being developed for use with SGML documents. A DSSSL specification has
two parts. The first part specifies a transformation of the document tree. There do not
appear to be any restrictions on the kinds of transformations that may be performed. The
second part of the specification provides “style sheets” for the elements in the transformed
tree. DSSSL’s designers appear to believe that formatting will not perturb the order of
the document elements; that is, that the order of the nodes in a traversal of the tree
will be directly reflected in their placement on the page. Thus, the nodes of the tree
must be rearranged if their order on the page is to be altered. Proteus does not need the
tree transformation step because its presentation model allows the placement of document
elements at arbitrary positions on the page or screen. It is not clear whether DSSSL is
suitable for an interactive system because its current tree-transformation module is ad hoc,
making it hard to invert tree transformations when mapping screen locations back to the
underlying document.

It is also appropriate to compare Proteus’s style specifications to the languages used to
specify pretty-printing in software development environments. In the Synthesizer Genera-
tor [67], the appearance of a program document is specified by “unparsing” rules embedded
in the attribute grammar specifying the analysis of the program. The Synthesizer Gener-
ator’s model is that the program text is analyzed to produce a parse tree which is then
“unparsed” into a stream of data for presentation to the user. The stream of data contains
text intermixed with formatting primitives and is displayed by a simple text formatter.
It is difficult to see how this model can be applied to non-textual media or extended to
support arbitrary two-dimensional layout (as was shown in Figure 6.3). Another contrast
with Proteus is that each production in the attribute grammar has its own unparsing rules.
Thus, each unparsing rule is defined in a setting where there is more knowledge of context
than is the case using Proteus, which defines rules on a per-node-type basis. The PPML
pretty-printing language [32] achieves a similar result by binding unparsing rules to tree pat-
terns. With Proteus, conditional rules are used to make a node’s presentation dependent
on the production in which it appears. Experience so far indicates that Proteus’s approach
is acceptable because the vast majority of presentation rules are independent of a node’s
context.

6.2.3 Medium-Independence

Proteus is the first system for managing the appearance of objects that is based on an
explicit model of media. As a result, it can be adapted to serve media that use very different
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formatting operations and is well-suited to the compound document model.

Now, every multimedia system must provide some common ground on which to manip-
ulate elements of different media it supports. For instance, in the Action! [45] multimedia
presentation editor, every object (text, ellipse, video clip) has a spatial position and a po-
sition on the time line. But otherwise, there is no common paradigm that is applied to the
various objects.

This pattern is repeated in research multimedia systems. Both the Firefly [9] and
Xavier [26] systems use layout mechanisms that are based on techniques well-known from
textual document formatting. Like Proteus, Firefly uses constraints to determine the layout
of multimedia data in time. Xavier uses the boxes-and-glue method (originally designed for
text documents [40]) for temporal layout. But neither system provides any other facilities
that are applicable to all media.

Proteus stands apart from all existing multimedia software in having an explicit model
of a “medium”. Each of the programs mentioned above applies a single formatting system
to a variety of primitive data types. For instance, Xavier supports video clips, text, and
two-dimensional graphics. It applies a uniform formatting model (boxes and glue) to lay
them out in two spatial dimensions and the time dimension. We call Xavier a multimedia
system because it supports primitives that are drawn from different media. But, unlike
Proteus, Xavier has no explicit representation of the concept of “medium”. In fact, in
the terms used by Proteus, Xavier is a single-medium system because it applies the same
formatting model and the same dimensions to all its objects.

6.2.4 User Interface Systems

Because the way a document is drawn is part of its user interface, Proteus can be
considered a kind of user interface software and its implementation has similarities to a
number of existing user interface systems [31, 44, 52, 58]. Like these systems, it provides a
layout service and ways of defining the parameters that control object appearance. In fact,
Proteus’s use of constraints to specify document appearance is similar to their use in the
Garnet toolkit [52] and the Higgens UIMS [31]. Comparisons are awkward, though, because
a user interface is subtly different from a document. Some of the differences are:

e Proteusis only involved in the output aspects of the user interface, while user interface
systems also manage input.

o Architecturally speaking, user interface systems sit between the program and the user,
managing all aspects of input and output. In contrast, Proteus is an internal service
used by parts of the program to determine how to draw the document. Proteus does
not stand between the program and the user, but rather between the document and
the formatting modules of Fnsemble.

e Proteus is used to describe how a document should look on any device. Thus, pre-
sentation schemas describe the layout and formatting of the document in abstract,
device-independent terms. User interface systems are used to describe computer inter-
faces using bit-mapped displays and generally use device-specific concepts like pixels.
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e In order to provide maximum flexibility, most user interface systems allow an interface
to be specified procedurally. In contrast, Proteus’s presentation schemas are almost
entirely declarative (with tree elaboration being a possible exception).

It is possible to envision Proteus being used as part of a user interface system. The world
of classic user interface objects like buttons, menus, and scrollbars, can be seen as “just
another medium” with its own primitive objects, dimensions, and formatting operations.
So, Proteus can be adapted to this medium and provide control over the appearance of a
user interface via presentation schemas. Of course, a considerable amount of work would
be required to create a user interface system based on Proteus.
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Chapter 7

Conclusions

The preceding chapters of this dissertation have described the design of Ensemble and its
presentation system, Proteus. Together, Fnsemble and Proteus have several novel features:

e multiple presentations,
e a simple, powerful set of presentation services, and
e an architecture that can provide these services to a wide variety of media.

An Ensemble user can view multiple presentations of the same document simultaneously.
Changes made to the document through one presentation will be seen immediately in all
other active presentations. Ensemble’s support for multiple presentations is completely
general. Unlike Grif [65], there are no restrictions on the set of presentations that may be
viewed simultaneously. Any presentation that can be specified can be viewed simultaneously
with any other presentation that can be specified.

Thus, as the subsystem that manages appearance specifications for the various pre-
sentations, Proteus is the centerpiece of Ensemble’s support for multiple presentations.
Proteus provides four simple services that together are powerful enough to describe a wide
variety of novel and conventional presentations of text, graphics, and video documents.
The application of these services to a particular document is specified in a presentation
schema. The schema describes the appearance of the document in abstract terms. Unlike
the formatting and rendering services of user interface software (e.g. Chiron [35]), Proteus’s
services are suitable to a wide variety of output devices and could be used in a production-
quality document or multimedia system. In particular, Proteus’s services are well-suited
to natural-language text documents and to program documents, while most user interface
software gives short shrift to text.

Of equal importance is Proteus’s ability to adapt to a variety of media. Its four presenta-
tion services are medium-independent. Proteus has an adaptable, kernel/shell architecture
that enables it to change both the presentation schema interpreter and its client interface
in order to suit the needs of different media. The kernel provides generic forms of the
presentation services that are adapted to different media via medium-specific shells. The
behavior of each medium-specific shell is driven by an explicit representation of the medium
to which it corresponds. Proteus is the first system to be based on an explicit, encapsulated
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notion of a medium. Many systems have a generic notion of primitive data types associated
with various media (e.g. text, line, video clip). No other system has a higher level notion
that brings multiple primitive data types together with formatting operations to define a
“medium”.

7.1 Future Directions

As with any course of research, further work remains to be done. Some areas needing
additional research were identified in earlier discussions of experience with Proteus. Others
are simply natural directions for extension of this work.

Performance

The poor performance shown by the current presentation engine for large documents
must be addressed. Kannan Muthukkaruppan’s work on SPINE [51] is a first step in this
direction but an implementation of a presentation-schema-to-SPINE translator must be
completed before the attribute grammar approach can be fully evaluated. It may also be
worthwhile to explore other approaches to improving performance including specialized data
structures for box layout.

Nominal Layout versus Actual Layout

Roy Goldman’s experiments with attribute systems for Ensemble’s graphics medium [23]
brought the distinction between an object’s nominal size and its actual size clearly into
focus. It is common for objects in many media to have both nominal layout and actual
layout. Nominal sizes and positions (i.e. layout) are used as input arguments to formatting
operations, but often the formatting operation produces output with different sizes and
positions; hence the need to represent actual size and position separately. Figure 6.9 (on
page 75) showed an example of this phenomenon from the graphics medium. Proteus needs
a mechanism supporting this distinction in both the presentation schema language and the
presentation engine.

Presentation Schema Syntax

Experience with Proteus has found three areas in the syntax of presentation schemas
that need improvement. First, the current syntax for specifying tree elaboration is awkward
when a single node type specifies many different creation commands. A new syntax that
helps the user understand the entire elaborative transformation for that node would be very
helpful. The second area needing improvement is the tree navigation syntax. Currently, the
nodes involved in constraints must be identified by relative position, which is awkward for
nodes that are not nearby in the tree. Proteus needs operations that identify nodes by type,
rather than by relative position. The best syntax and semantics of such operations remain
to be determined. Finally, the presentation schema language needs language features that
ease the definition of frequently used expressions and other specification idioms.
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Applying Proteus to Additional Media

To date, Proteus has been used with three media: text, graphics, and video. The
implementations of the text and graphics media are moderately sophisticated, but are still
quite far from the standards of commercial software. The video medium implementation is
extremely primitive and stands only to demonstrate that Proteus is applicable to a dynamic
medium.

So, Proteus needs additional clients to promote the claim that it is suitable for all media.
One set of potential new clients would more sophisticated graphics and text media. In
particular, a page-breaking text medium supporting multiple columns would be a substantial
advance and would clearly demonstrate the sufficiency of Proteus’s services for high-quality
formatting. Another set of potential clients would be media not yet supported in any
form. Examples might include computer music, digital audio, synthesized speech, three-
dimensional graphics, and animation (either two- or three-dimensional).

Interaction within Compound Documents

The current implementation of compound documents in Ensemble does not allow the
non-dimensional presentation attributes of a sub-document to depend on those of its ances-
tors. This contrasts with Grif, which because it has a single set of presentation attributes
for all documents (i.e. it is a single medium system), is able to pass attribute values freely
through the compound document tree. Providing the same service in Ensemble is more diffi-
cult because Fnsemble documents do not have a uniform presentation model. So, Ensemble
and Proteus require a different protocol that can allow subdocuments to take advantage of
their context (i.e. their ancestors in the compound document tree), without unnecessarily
restricting the ways that compound document may be composed.

Schema Modularity

At this time, presentation schemas are stand-alone specifications. So, if two schemas
have a great deal in common, there is no way for them to share the common parts of their
specifications. Clearly, the effort to produce related presentation schemas and to keep them
in agreement would be reduced if some sharing mechanism could be introduced.

PPML [32] has an approach that might make sense for Proteus. PPML allows its
specifications to be composed into a logical stack of specifications. Specifications at the top
of the stack take precedence over those lower in the stack. A shared base specification can
be put at the bottom of the stack and then variations from that base can be placed higher
up There are implementation issues that may make this approach easier with PPMIL than
with Proteus, but a mechanism of a similar type might ease the burden of schema creation.

Proteus without Ensemble

While Proteus was conceived to meet the needs of Ensemble, it is actually a service with
very general applications. It could be used to manage the appearance of X11 user interfaces.
It could be used by any system that can usefully apply a tree-structured model to the
objects it displays. In a system using Proteus, the appearance of objects (e.g. documents,
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data structures, user interfaces) would be specified by external specifications, rather than
source code in the system’s development language. If these specifications are made properly
accessible, end users can gain more control over the interfaces to the objects they interact
with. Also, because Proteus’s services can manage many aspects of the output process,
systems using Proteus should be simpler, with all the attendant benefits of simplicity (easier
maintenance, fewer bugs, etc.).

So, it makes sense to try to make Proteus independent of Ensemble. This will require
defining the interfaces that Proteus requires to walk the document tree and manage the
presentation tree. Other interfaces will also have to be defined but may not be apparent
until the task is attempted. The creation of Medium objects and of each medium’s custom
interface will have to be automated. Then, having made it possible to use Proteus with
other systems, the utility to do so will have to be demonstrated with examples.
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Appendix A

A Program Pretty-Printing
Example

This appendix presents the parsing grammar and a presentation schema for a toy pro-
gramming language called “Simple”. The Simple language is intended primarily for testing
the lexical and syntactic analysis of Ensemble. It has a C-like syntax and is simple enough
to be understood quickly, but complex enough to make a good example of the use of Proteus
for program pretty-printing.

A.1 The Grammar of Simple

This section contains the grammar for the Simple language. A Simple program is
composed of a sequence of variable and function declarations. All variables in Simple are
non-negative integers, so only their names need to be declared. The normal set of arithmetic
operators is supported for them. A function declarations has a header that declares the
function’s parameters and a body composed of a sequence of declarations followed by a
sequence of statements. There are four types of statements: assignments, function calls,
return statements, and if statements.

The grammar of Simple is presented below in the format of the bison parser generator.
It should be noted that there are several tokens that may appear in a Simple document that
are not mentioned explicitly in any production. The §, error, and illegal tokens can be
generated by the parser. The § token is used to mark the end of the text stream. The error
and illegal tokens are used to mark subtrees that do not match the parsing specification.
The WS and COMMENT tokens hold the text of whitespace and comments, respectively. They
are generated by the lexical analyzer, but are ignored by the parser. However, they are kept
in the program tree so that they may appear when the program is presented.

/* Simple - a simple integer language */

Al
h}
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/* Implicit system tokens */
/* $, error, illegal. */

/* Single-char tokens */
/token SEMI COLON COMMA LPAREN RPAREN LBRACE RBRACE EQ

/* Variable-content tokens */
%token WS COMMENT IDENT NUM HI_OP LO_OP

/* Keywords */
htoken RETURN VAR FUNCTION KEY_IF KEY_ELSE

hh
PROGRAM: DECL_LIST STMT_LIST
DECL_LIST: /* empty */
| DECL_LIST VAR_DECL SEMI
| DECL_LIST FUNCTION_DECL
VAR_DECL: VAR IDENT_LIST

FUNCTION_DECL: FUNCTION IDENT ARG_LIST BLOCK
ARG_LIST: LPAREN RPAREN
| LPAREN IDENT_LIST RPAREN

IDENT_LIST: IDENT
| IDENT_LIST COMMA IDENT

BLOCK: LBRACE DECL_LIST STMT_LIST RBRACE

STMT_LIST: /* empty */
I STMT_LIST STMT
STMT: ASSIGN SEMI
I FUNCALL SEMI
I RETURN_STMT SEMI
I IF_STMT

ASSIGN: IDENT EQ EXPR

EXPR: PRODUCT
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| EXPR LO_0OP PRODUCT
PRODUCT: SIMPLE_EXPR
| PRODUCT HI_OP SIMPLE_EXPR

SIMPLE_EXPR: IDENT

| NUM

| FUNCALL

I LPAREN EXPR RPAREN
FUNCALL: IDENT LPAREN RPAREN

I IDENT LPAREN CALL_ARGS RPAREN
CALL_ARGS: EXPR

I CALL_ARGS COMMA EXPR

RETURN_STMT: RETURN EXPR

I

IF_STMT: IF_BRANCH
| IF_BRANCH ELSE_BRANCH

IF_BRANCH: IF_HEADER BLOCK
IF_HEADER: KEY_TIF LPAREN EXPR RPAREN
ELSE_BRANCH: KEY_ELSE BLOCK

| KEY_ELSE IF_HEADER BLOCK ELSE_BRANCH

W

A.2 Presenting the Simple Language

To illustrate how Proteus specifications can be used to control the presentation of pro-
grams in Simple, this section uses the classic example of a factorial function. The raw
ASCII text for this example is:

function factorial(x) {
if (x) { return x * factorial(x - 1); }
else { return 1; }

A presentation of this function is shown in Figure A.1. This presentation follows one of
the common line-breaking conventions for C, which places the left brace marking the start
of each block on its own line. The placement of the left braces is determined by the rules
affecting two node types, BLOCK and LBRACE. BLOCK nodes represent the entire sequence of
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function factorial (x)

if (x)
{

return x * factorial (x - 1);

}

else

{

return 1;
H
H

»

Figure A.1: A presentation of the factorial example for the Simple language. In this
presentation, the left brace starting each block is placed alone on a new line.

declarations and statements that appear within a matching pair of braces. The LBRACE
node is a leaf node (or token) that holds the left brace character that starts each block.
In this presentation, the position of the left brace is determined entirely by default rules,
because it has no rules of its own. Furthermore, because the LBRACE node is the first child
of the BLOCK node and has no left sibling, its default rule

VertPos: Top = LeftSib . Top;

fails and the implicit default rule (i.e. simple inheritance is used). The explicit default rule
for horizontal position

HorizPos: Left = Parent . Left;

also specifies simple inheritance. So, the LBRACE node’s position is precisely that specified
for its parent the BLOCK node.
The BLOCK node’s vertical position is determined by the rule:

VertPos: Top = LeftSib . Bottom;

This aligns the top of the block with the bottom of its predecessor, which is either the
argument list of the function header, the if header, or the else keyword. The BLOCK node’s
left edge is set to be the same as its parent by the default rule.

The complete presentation schema is:

MEDIUM text;
PRESENTATION simple FOR simple;

DEFAULT
BEGIN
Width = AllChildren . Width;
Height = AllChildren . Height;



VertPos: Top = LeftSib . Top;
HorizPos: Left = Parent . Left;
Justify = Parent . Justify;
FontFamily = Parent . FontFamily;
Bold = Parent . Bold;

Italic = Parent . Italic;

Size = Parent . Size;

LineSpacing = Parent . LineSpacing;
Indent = 0;

RightMargin = Parent . RightMargin;
Visible = Yes;

END;

RULES
// In programs, the root node is ’ultra_root’, to make sure that
// a comment at the head of the program is visible in the tree.
ULTRA _ROQT:

BEGIN

Width = 432;

HorizPos: Left = 72;

VertPos: Top = 10;

FontFamily = ''new century schoolbook";
LineSpacing = 1.2;

Bold = No;

Italic = No;

Size = 18;

Justify = LeftJustify;
RightMargin = 1000;
END;
PROGRAM:
BEGIN
VertPos: Top
END;
BLOCK:
BEGIN
VertPos: Top
END;
FUNCTION:
BEGIN
Italic = Yes;
END;
DECL_LIST :
BEGIN
VertPos: Top = LeftSib . Bottom;
IF (TypeOf(Parent) == "BLOCK") THEN
HorizPos: Left = LeftSib . Left + 20;
ENDIF
END;
FUNCTION DECL :
BEGIN

LeftSib . Bottom;

LeftSib . Bottom;
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IF (TypeOf(LeftSib) == "DECLLIST") THEN
VertPos: Top = LeftSib . Bottom;
ENDIF
END;
VAR DECL :
BEGIN
IF (TypeOf(LeftSib) == "DECLLIST") THEN
VertPos: Top = LeftSib . Bottom;
ENDIF
END;
STMT_LIST :
BEGIN
VertPos: Top = LeftSib . Bottom;
IF (TypeOf(Parent) == "BLOCK") THEN
HorizPos: Left = Parent . Left + 20;
ENDIF
END;
STMT :
BEGIN
IF (TypeOf(LeftSib) == "STMT.LIST") THEN
VertPos: Top = LeftSib . Bottom;
ENDIF
END;
ARG_LIST:
BEGIN
HorizPos: Left = LeftSib . Right + 10;
END;
IDENT LIST:
BEGIN
IF (TypeOf(Parent) !'= "IDENT.LIST") THEN
IF (TypeOf(LeftSib) == "LPAREN") THEN
HorizPos: Left = LeftSib . Right + 2;
ELSE
HorizPos: Left = LeftSib . Right + 10;
ENDIF
ENDIF
END;
IDENT:
BEGIN
IF (TypeOf(Parent) == "FUNCTIONDECL") THEN
HorizPos: Left = LeftSib . Right + 8;
ELSE
HorizPos: Left = LeftSib . Right + 2;
ENDIF
END;
VAR:
BEGIN
Italic = Yes;
END;

KEY_TF:



BEGIN
Bold = Yes;
END;
KEY ELSE:
BEGIN
Bold = Yes;
END;
RETURN :
BEGIN
Bold = Yes;
END;
EQ
BEGIN
HorizPos: Left = LeftSib . Right + 4;
END;
HIOP :
BEGIN
HorizPos: Left
END;
LOOP :
BEGIN
HorizPos: Left = LeftSib . Right + 4;
END;
NUM :
BEGIN
HorizPos: Left
END;
SEMI
BEGIN
HorizPos: Left = LastLeaf(LeftSib) . Right + 2;
VertPos: Bottom = LastLeaf(LeftSib) . Bottom;
END;
COMMA :
BEGIN
HorizPos: Left = LeftSib . Right + 2;
END;
LPAREN:
BEGIN
IF ((TypeOf(Parent) == "FUNCALL") ||
(TypeOf (Parent) == "IF_HEADER")) THEN
HorizPos: Left = LeftSib . Right + 10;
ENDIF
END;
RPAREN:
BEGIN
HorizPos: Left = LeftSib . Right + 2;
END;
RBRACE:
BEGIN
VertPos: Top = LeftSib . Bottom;

LeftSib . Right

+
S

LeftSib . Right

+
S
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END;
EXPR:
BEGIN
IF (TypeOf(LeftSib) == "LPAREN") THEN
HorizPos: Left = LeftSib . Right + 2;
ELSE
HorizPos: Left = LeftSib . Right + 10;
ENDIF
END;
SIMPLE _EXPR:
BEGIN
HorizPos: Left = LeftSib . Right + 10;
END;
PRODUCT:
BEGIN
HorizPos: Left = LeftSib . Right + 10;
END;
HI_OP:
BEGIN
HorizPos: Left = LeftSib . Right + 10;
END;
LO_OP:
BEGIN
HorizPos: Left = LeftSib . Right + 10;
END;
CALL_ARGS:
BEGIN
HorizPos: Left = LeftSib . Right + 2;
END;
IF_HEADER:
BEGIN
HorizPos: Left = LeftSib . Right + 10;
END;
ELSE_BRANCH:
BEGIN
VertPos: Top = LeftSib . Bottom;
END;
WS:
BEGIN
IF (TypeOf(LeftSib) == "COMMENT" ||
Type0f (LeftSib) == "DOC_COMMENT') THEN
VertPos: Top = LeftSib . Bottom;
ELSE
HorizPos: Left = LeftSib . Right;
ENDIF
END;
COMMENT :
BEGIN
HorizPos: Left = LeftSib . Right + 10;
FontFamily = 'helvetica";
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function factorial (x){
if (x){

return x * factorial (x - 1);

else {

}

return 1;

’.

Figure A.2: An alternate presentation of the factorial example in which the left brace
beginning each block is placed at the end of the line containing the preceding material.

END;
DOC_COMMENT :
BEGIN
HorizPos: Left = LeftSib . Right + 10;
END;
END

An alternate presentation of the same program can be seen in Figure A.2. This presen-
tation uses the other common format for left braces, in which the left brace is placed on the
same line as the preceding material. To produce this presentation only two changes were
made in the presentation schema. First, the vertical position rule for the BLOCK node was
removed. This makes the default rule apply, which aligns the top of the BLOCK node with
the top of its left sibling. Since the LBRACE node inherits its vertical position from the
BLOCK node, this change effectively moves the left brace up to the same line as the preceding
material. Secondly, the LBRACE node is given an explicit horizontal position rule:

HorizPos: Left = LeftSib(Parent) . Right + 2 ;

This places the left edge of the brace two points to the right of the preceding element. (The
material preceding the left brace is always part of the left sibling of its parent.)



